Skip to main content
Log in

Sum Rules for the Gravitational Form Factors Using Light-Front Dressed Quark State

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We consider a light-front dressed quark state, per se, instead of a proton state, we consider a simple composite spin-1/2 state of a quark dressed with a gluon. This perturbative model incorporates gluonic degrees of freedom, which enable us to evaluate the gravitational form factors (GFFs) of the quark as well as the gluon in this model (More et al. Phys Rev D 105(5):056017, 2022. arXiv:2112.06550, https://doi.org/10.1103/PhysRevD.105.056017; Gluon contribution to the mechanical properties of a dressed quark in light-front Hamiltonian QCD, 2023. arXiv:2302.11906). We employ the Hamiltonian framework and choose the light-front gauge \(A^+=0\). We calculate the four GFFs and corroborate the sum rules that GFFs satisfy. The GFF DD is attributed to information like pressure, shear, and energy distributions. We analyze some of these distributions for a dressed quark state at one loop in QCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. More, A. Mukherjee, S. Nair, S. Saha, Gravitational form factors and mechanical properties of a quark at one loop in light-front Hamiltonian QCD, Phys. Rev. D 105 (5) (2022) 056017. arXiv:2112.06550, https://doi.org/10.1103/PhysRevD.105.056017

  2. J.J. More, A. Mukherjee, S. Nair, S. Saha, Gluon contribution to the mechanical properties of a dressed quark in light-front Hamiltonian QCD (2023). https://doi.org/10.1103/PhysRevD.107.116005

  3. N. d’Hose, S. Niccolai, A. Rostomyan, Experimental overview of deeply virtual Compton scattering. Eur. Phys. J. A 52(6), 151 (2016). https://doi.org/10.1140/epja/i2016-16151-9

    Article  ADS  Google Scholar 

  4. K. Kumerički, S. Liuti, H. Moutarde, GPD phenomenology and DVCS fitting, The Eur. Phys. J. A 52 (6) (2016). https://doi.org/10.1140/epja/i2016-16157-3

  5. M. Aaboud, et al., A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment, Eur. Phys. J. C 79 (2) (2019) 120. arXiv:1807.07447, https://doi.org/10.1140/epjc/s10052-019-6540-y

  6. S. Diehl, et al., Extraction of beam-spin asymmetries from the hard exclusive \(\pi ^+\) channel off protons in a wide range of kinematics, Phys. Rev. Lett. 125 (18) (2020) 182001. arXiv:2007.15677, https://doi.org/10.1103/PhysRevLett.125.182001

  7. F. Georges, et al., Deeply virtual Compton scattering cross section at high Bjorken xB, Phys. Rev. Lett. 128 (25) (2022) 252002. arXiv:2201.03714, https://doi.org/10.1103/PhysRevLett.128.252002

  8. R. Abdul Khalek, et al., Science requirements and detector concepts for the electron-ion collider: EIC yellow report, Nucl. Phys. A 1026 (2022) 122447. arXiv:2103.05419, https://doi.org/10.1016/j.nuclphysa.2022.122447

  9. C. Lorcé, H. Moutarde, A. P. Trawiński, Revisiting the mechanical properties of the nucleon, Eur. Phys. J. C 79 (1) (2019) 89. arXiv:1810.09837, https://doi.org/10.1140/epjc/s10052-019-6572-3

  10. D. Chakrabarti, C. Mondal, A. Mukherjee, S. Nair, X. Zhao, Gravitational form factors and mechanical properties of proton in a light-front quark-diquark model. Phys. Rev. D 102, 113011 (2020). arXiv:2010.04215, https://doi.org/10.1103/PhysRevD.102.113011

  11. M. J. Neubelt, A. Sampino, J. Hudson, K. Tezgin, P. Schweitzer, Energy momentum tensor and the D-term in the bag model, Phys. Rev. D 101 (3) (2020) 034013. arXiv:1911.08906, https://doi.org/10.1103/PhysRevD.101.034013

  12. P. Hagler, J.W. Negele, D.B. Renner, W. Schroers, T. Lippert, K. Schilling, Moments of nucleon generalized Parton distributions in lattice QCD. Phys. Rev. D 68, 034505 (2003). arXiv:hep-lat/0304018, https://doi.org/10.1103/PhysRevD.68.034505

  13. D. Brommel, et al., Moments of generalized Parton distributions and quark angular momentum of the nucleon, PoS LATTICE2007 (2007) 158. arXiv:0710.1534, https://doi.org/10.22323/1.042.0158

  14. A. Rajan, T. Gorda, S. Liuti, K. Yagi, Bounds on the equation of state of neutron stars from high energy deeply virtual exclusive experiments (12 2018). arXiv:1812.01479

  15. C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, H. Panagopoulos, G. Spanoudes, Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass, Phys. Rev. D 101 (9) (2020) 094513. arXiv:2003.08486, https://doi.org/10.1103/PhysRevD.101.094513

  16. W.-M. Zhang, A. Harindranath, Light front QCD. 2: Two component theory, Phys. Rev. D 48 (1993) 4881–4902. https://doi.org/10.1103/PhysRevD.48.4881

  17. J. More, A. Mukherjee, S. Nair, Quark Wigner distributions using light-front wave functions, Phys. Rev. D 95 (7) (2017) 074039. arXiv:1701.00339, https://doi.org/10.1103/PhysRevD.95.074039

  18. J. More, A. Mukherjee, S. Nair, Wigner distributions for Gluons, Eur. Phys. J. C 78 (5) (2018) 389. arXiv:1709.00943, https://doi.org/10.1140/epjc/s10052-018-5858-1

  19. A. Harindranath, R. Kundu, A. Mukherjee, J.P. Vary, Twist four longitudinal structure function in light front QCD. Phys. Rev. D 58, 114022 (1998). arXiv:hep-ph/9808231, https://doi.org/10.1103/PhysRevD.58.114022

  20. X. Ji, X. Xiong, F. Yuan, Transverse polarization of the Nucleon in parton picture, Phys. Lett. B 717 (2012) 214–218. arXiv:1209.3246, https://doi.org/10.1016/j.physletb.2012.09.027

  21. A. Harindranath, R. Kundu, W.-M. Zhang, Deep inelastic structure functions in light front QCD: Radiative corrections. Phys. Rev. D 59, 094013 (1999). arXiv:hep-ph/9806221, https://doi.org/10.1103/PhysRevD.59.094013

  22. S. J. Brodsky, D. S. Hwang, B.-Q. Ma, I. Schmidt, Light cone representation of the spin and orbital angular momentum of relativistic composite systems, Nucl. Phys. B 593 (2001) 311–335. arXiv:hep-th/0003082, https://doi.org/10.1016/S0550-3213(00)00626-X

  23. M. Deka, et al., Lattice study of quark and glue momenta and angular momenta in the nucleon, Phys. Rev. D 91 (1) (2015) 014505. arXiv:1312.4816, https://doi.org/10.1103/PhysRevD.91.014505

  24. P. E. Shanahan, W. Detmold, Gluon gravitational form factors of the nucleon and the pion from lattice QCD, Phys. Rev. D 99 (1) (2019) 014511. arXiv:1810.04626, https://doi.org/10.1103/PhysRevD.99.014511

  25. M. V. Polyakov, P. Schweitzer, Forces inside hadrons: pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A 33 (26) (2018) 1830025. arXiv:1805.06596, https://doi.org/10.1142/S0217751X18300259

  26. C. Lorcé, The light-front gauge-invariant energy-momentum tensor. JHEP 08, 045 (2015). arXiv:1502.06656, https://doi.org/10.1007/JHEP08(2015)045

  27. P. Lowdon, K.Y.-J. Chiu, S.J. Brodsky, Rigorous constraints on the matrix elements of the energy-momentum tensor. Phys. Lett. B 774, 1–6 (2017). https://doi.org/10.1016/j.physletb.2017.09.050

    Article  ADS  MathSciNet  Google Scholar 

  28. X. Ji, Gauge-invariant decomposition of nucleon spin. Phys. Rev. Lett. 78, 610–613 (1997). https://doi.org/10.1103/PhysRevLett.78.610

    Article  ADS  Google Scholar 

  29. A. Freese, G.A. Miller, Forces within hadrons on the light front. Phys. Rev. D 103, 094023 (2021). arXiv:2102.01683, https://doi.org/10.1103/PhysRevD.103.094023

  30. M. V. Polyakov, B.-D. Sun, Gravitational form factors of a spin one particle, Phys. Rev. D 100 (3) (2019) 036003. arXiv:1903.02738, https://doi.org/10.1103/PhysRevD.100.036003

  31. C. Cebulla, K. Goeke, J. Ossmann, P. Schweitzer, The nucleon form-factors of the energy–momentum tensor in the Skyrme model. Nucl. Phys. A 794(1–2), 87–114 (2007). https://doi.org/10.1016/j.nuclphysa.2007.08.004

    Article  ADS  Google Scholar 

  32. D. Chakrabarti, C. Mondal, A. Mukherjee, Gravitational form factors and transverse spin sum rule in a light front quark-diquark model in AdS/QCD, Phys. Rev. D 91 (11) (2015) 114026. arXiv:1505.02013, https://doi.org/10.1103/PhysRevD.91.114026

  33. M.V. Polyakov, H.-D. Son, Nucleon gravitational form factors from instantons: forces between quark and gluon subsystems. JHEP 09, 156 (2018). arXiv:1808.00155, https://doi.org/10.1007/JHEP09(2018)156

  34. A. Metz, B. Pasquini, S. Rodini, The gravitational form factor D(t) of the electron. Phys. Lett. B 820, 136501 (2021). arXiv:2104.04207, https://doi.org/10.1016/j.physletb.2021.136501

Download references

Acknowledgements

J. M. would like to thank the Department of Science and Technology (DST), Government of India, for financial support through grant No. SR/WOS-A/PM-6/2019(G) and Prof. Uma Sankar for partial travel support to attend the conference under the grant ‘PGRDFI94091’.

Author information

Authors and Affiliations

Authors

Contributions

JM wrote the main manuscript. SN and SS prepared all the plots. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Jai More.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, J., Mukherjee, A., Nair, S. et al. Sum Rules for the Gravitational Form Factors Using Light-Front Dressed Quark State. Few-Body Syst 64, 68 (2023). https://doi.org/10.1007/s00601-023-01841-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01841-w

Navigation