Skip to main content
Log in

Exact and Approximate Solutions of Dirac–Morse Problem in Curved Space-Time

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this work, we analyze the Dirac–Morse problem with spin and pseudo-spin symmetries in deformed nuclei. So, we consider the Dirac equation with the scalar U(r) and vector V(r) Morse-type potentials and tensor Hellmann-type potential in curved space-time whose line element is of type \(ds^2 = (1+\alpha ^2 U(r))^2(dt^2- dr^2) - r^2d\theta ^2-r^2\sin ^2\theta d\phi ^2\). From the effective tensor potential \(A_{eff}(r) = \lambda /r + \alpha ^2\lambda U(r)/r + A(r) \), that contain terms of spin-orbit coupling, line element and electromagnetic field, we analyze dirac’s spinor in two ways: (i) in the first, we solve the problem approximately considering \(A_{eff}(r)\) not null; (ii) in the second analysis, we obtain exact solutions of radial spinor and eigenenergies considering \(A_{eff}(r) = 0\). In both cases, we consider two types of coupling of vector and scalar potentials, with spin symmetry for \( V(r) = U(r) \) and pseudo-spin symmetry for \( V(r) = -\,U(r)\). We analyzed the effect of coupling the electromagnetic field with the curvature of space in eigenenergies and radial spinor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.T. Hecht, A. Adler, Nucl. Phys. A 137, 1 (1969)

    Article  Google Scholar 

  2. A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 8 (1969)

    Article  ADS  Google Scholar 

  3. J.N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997)

    Article  ADS  Google Scholar 

  4. J.N. Ginocchio, Phys. Rep. 414, 4 (2005)

    Article  Google Scholar 

  5. G.A. Lalazissis, Y.K. Gambhir, J.P. Maharana, C.S. Warke, P. Ring, Phys. Rev. C 58, R45 (1998)

    Article  ADS  Google Scholar 

  6. K. Sugawara-Tanabe, A. Arima, Phys. Rev. C 58, R3065 (1998)

    Article  ADS  Google Scholar 

  7. H. Liang, J. Meng, S.-G. Zhou, Phys. Rep. 570, 1–84 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. C.L. Pekeris, Phys. Rev. 45, 98 (1934)

    Article  ADS  Google Scholar 

  9. O. Aydoğdu, R. Sever, Ann. Phys. 325, 2 (2010)

    Article  Google Scholar 

  10. O. Aydoğdu, R. Sever, Phys. Lett. B 703, 379 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Hamzavi, A.A. Rajabi, H. Hassanabadi, Few-Body Syst. 52, 19 (2012)

    Article  ADS  Google Scholar 

  12. S. Ortakaya, Ann. Phys. 338, 250 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. S.M. Ikhdair, B.J. Falaye, Phys. Scr. 87, 3 (2013)

    Article  Google Scholar 

  14. E. Maghsoodi, H. Hassanabadi, O. Aydoğdu, Phys. Scr. 86, 1 (2012)

    Article  Google Scholar 

  15. P. Gombas, Die Statistische Theorie des Atoms und ihre Anwendungen (Springer, Berlin, 1949), p.304

    Book  MATH  Google Scholar 

  16. J. Callaway, Phys. Rev. 112, 322 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  17. G.J. Iafrate, J. Chem. Phys. 45, 3 (1966)

    Article  Google Scholar 

  18. J. Callaway, P.S. Laghos, Phys. Rev. 187, 192 (1969)

    Article  ADS  Google Scholar 

  19. M. Hamzavi, A.A. Rajabi, Can. J. Phys. 91, 5 (2013)

    Article  Google Scholar 

  20. C.A. Onate, M.C. Onyeaju, A.N. Ikot, O. Ebomwonyi, J.O.A. Idiodi, Commun. Theor. Phys. 70, 3 (2018)

    Article  Google Scholar 

  21. J.-Y. Guo, J.-C. Han, R.-D. Wang, Phys. Lett. A 353, 378 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. Zhou, J.-Y. Guo, Chin. Phys. B 17, 380 (2008)

    Article  ADS  Google Scholar 

  23. M.-C. Zhang, Acta Phys. Sin. 58, 712 (2009)

    Article  Google Scholar 

  24. M.-C. Zhang, G.-Q. Huang-Fu, B. An, Phys. Scr. 80, 065018 (2009)

    Article  ADS  Google Scholar 

  25. M.R. Setare, Z. Nazari, Mod. Phys. Lett. A 25, 549 (2010)

    Article  ADS  Google Scholar 

  26. M.D. de Oliveira, A.G.M. Schmidt, Phys. Scr. 95, 5 (2020)

    Article  Google Scholar 

  27. M.D. de Oliveira, A.G.M. Schmidt, Phys. Scr. 96, 055301 (2021)

    Article  ADS  Google Scholar 

  28. M.D. de Oliveira, Int. J. Mod. Phys. A 36, 2150216 (2021)

    Article  Google Scholar 

  29. M.D. de Oliveira, A.G.M. Schmidt, Few-Body Syst. 62, 90 (2021)

    Article  ADS  Google Scholar 

  30. M.D. de Oliveira, A.G.M. Schmidt, Int. J. Mod. Phys. A 37, 2250020 (2022)

    Article  Google Scholar 

  31. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, Hoboken, 1972), pp.133–135

    Google Scholar 

  32. R. Adler, M. Bazin, M. Schiffer, Introduction to General Relativity (McGraw-Hill Book Company, New York, 1965), pp.395–401

    MATH  Google Scholar 

  33. G.F.R. Ellis, S.W. Hawking, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973), pp.131–133

    MATH  Google Scholar 

  34. M.D. de Oliveira, A.G.M. Schmidt, Ann. Phys. 401, 21 (2019)

    Article  ADS  Google Scholar 

  35. M. Moshinsky, A. Szczepaniak, J. Phys. A 22, L817 (1989)

    Article  ADS  Google Scholar 

  36. H. Akcay, Phys. Lett. A 373, 616 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  37. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists: A Comprehensive Guide, 7th edn. (Elsevier, Amsterdam, 1999)

    MATH  Google Scholar 

  38. R. De, R. Dutt, U. Sukhatme, J. Phys. A 25, L843 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge brazilian agencies CAPES and CNPq (grant number 310188/2020-2) for partial financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. de Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.D., Schmidt, A.G.M. Exact and Approximate Solutions of Dirac–Morse Problem in Curved Space-Time. Few-Body Syst 64, 50 (2023). https://doi.org/10.1007/s00601-023-01840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01840-x

Navigation