Skip to main content
Log in

Toward a Three-Quark Model for Nucleon GPDs

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We taylor previously introduced methods for isolating individual quark helicity projection nucleon fluctuations by parametrizing projected matrix elements. We then write down the overlap representation of Generalized Parton Distributions (GPDs) in terms of definite quark orbital angular momentum Light Front Wave Functions. We proceed to express nucleonic Parton Distribution Functions, Electromagnetic Form Factors, and the expectation value of the electromagnetic radius as limits and sum rules of these GPDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Ji, Deeply virtual compton scattering. Phys. Rev. D 55, 7114–7125 (1997). https://doi.org/10.1103/PhysRevD.55.7114

    Article  ADS  Google Scholar 

  2. D. Mueller, D. Robaschik, B. Geyer, Wave functions, evolution equations and evolution kernels. Nucl. Phys. B, Proc. Suppl. 29, 22–29 (1992). https://doi.org/10.1016/0920-5632(92)90418-R

    Article  ADS  Google Scholar 

  3. A.V. Radyushkin, Nonforward parton distributions. Phys. Rev. D 56, 5524–5557 (1997). https://doi.org/10.1103/PhysRevD.56.5524

    Article  ADS  Google Scholar 

  4. C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato, F. Steffens, Unpolarized and helicity generalized parton distributions of the proton within lattice QCD. Phys. Rev. Lett. 125(26), 262001 (2020). https://doi.org/10.1103/PhysRevLett.125.262001. arXiv:2008.10573 [hep-lat]

    Article  ADS  Google Scholar 

  5. M.V. Polyakov, K.M. Semenov-Tian-Shansky, Dual parametrization of GPDs versus double distribution Ansatz. Eur. Phys. J. A 40, 181–198 (2009). https://doi.org/10.1140/epja/i2008-10759-2. arXiv:0811.2901 [hep-ph]

    Article  ADS  Google Scholar 

  6. M. Diehl, Generalized parton distributions in impact parameter space. Eur. Phys. J. C 25, 223–232 (2002). https://doi.org/10.1007/s10052-002-1016-9. arXiv:hep-ph/0205208 [hep-ph]

    Article  ADS  Google Scholar 

  7. X.-D. Ji, Gauge-invariant decomposition of nucleon spin. Phys. Rev. Lett. 78, 610–613 (1997). https://doi.org/10.1103/PhysRevLett.78.610. arXiv:hep-ph/9603249 [hep-ph]

    Article  ADS  Google Scholar 

  8. M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for zeta –\(>\) 0. Phys. Rev. D 62, 071503 (2000). https://doi.org/10.1103/PhysRevD.66.119903. arXiv:hep-ph/0005108 [hep-ph] [Erratum: Phys. Rev.D66,119903(2002)]

    Article  ADS  Google Scholar 

  9. J.M.M. Chavez, V. Bertone, F. De Soto Borrero, M. Defurne, C. Mezrag, H. Moutarde, J. Rodríguez-Quintero, J. Segovia, Pion generalized parton distributions: a path toward phenomenology. Phys. Rev. D 105(9), 094012 (2022). https://doi.org/10.1103/PhysRevD.105.094012. arXiv:2110.06052 [hep-ph]

    Article  ADS  Google Scholar 

  10. K. Raya, J. Rodríguez-Quintero, Highlights of pion and kaon structure from continuum analyses. Rev. Mex. Fis. Suppl. 3(3), 0308008 (2022). https://doi.org/10.31349/SuplRevMexFis.3.0308008. arXiv:2204.01642 [hep-ph]

    Article  Google Scholar 

  11. L. Albino, I.M. Higuera-Angulo, K. Raya, A. Bashir, Pseudoscalar mesons: light front wave functions, GPDs, and PDFs. Phys. Rev. D 106(3), 034003 (2022). https://doi.org/10.1103/PhysRevD.106.034003. arXiv:2207.06550 [hep-ph]

    Article  ADS  Google Scholar 

  12. Z. Xing, M. Ding, K. Raya, L. Chang, A fresh look at the generalized parton distributions of light pseudoscalar mesons (2023) arXiv:2301.02958 [hep-ph]

  13. B. Almeida-Zamora, J.J. Cobos-Martínez, A. Bashir, K. Raya, J. Rodríguez-Quintero, J. Segovia, Light-front Wave Functions of Vector Mesons in an Algebraic Model (2023) arXiv:2303.09581 [hep-ph]

  14. J.M.M. Chávez, V. Bertone, F. De Soto Borrero, M. Defurne, C. Mezrag, H. Moutarde, J. Rodríguez-Quintero, J. Segovia, Accessing the pion 3D structure at US and China electron-ion colliders. Phys. Rev. Lett. 128(20), 202501 (2022). https://doi.org/10.1103/PhysRevLett.128.202501. arXiv:2110.09462 [hep-ph]

    Article  ADS  Google Scholar 

  15. G. Eichmann, Hadron properties from QCD bound-state equations. PhD thesis, Graz U. (2009)

  16. C. Mezrag, J. Segovia, L. Chang, C.D. Roberts, Parton distribution amplitudes: revealing correlations within the proton and Roper. Phys. Lett. B 783, 263–267 (2018). https://doi.org/10.1016/j.physletb.2018.06.062. arXiv:1711.09101 [nucl-th]

    Article  ADS  Google Scholar 

  17. C. Mezrag, J. Segovia, M. Ding, L. Chang, C.D. Roberts, Nucleon Parton Distribution Amplitude: A scalar diquark picture. In: 22nd International Conference on Few-Body Problems in Physics (FB22) Caen, France, July 9-13, 2018 (2018)

  18. A. Freese, I.C. Cloët, Impact of dynamical chiral symmetry breaking and dynamical diquark correlations on proton generalized parton distributions. Phys. Rev. C 101(3), 035203 (2020). https://doi.org/10.1103/PhysRevC.101.035203. arXiv:1907.08256 [nucl-th]

    Article  ADS  Google Scholar 

  19. A. Freese, I.C. Cloët, Quark spin and orbital angular momentum from proton generalized parton distributions. Phys. Rev. C 103(4), 045204 (2021). https://doi.org/10.1103/PhysRevC.103.045204. arXiv:2005.10286 [nucl-th]

    Article  ADS  Google Scholar 

  20. X.-D. Ji, J.-P. Ma, F. Yuan, Three quark light cone amplitudes of the proton and quark orbital motion dependent observables. Nucl. Phys. B 652, 383–404 (2003). https://doi.org/10.1016/S0550-3213(03)00010-5. arXiv:hep-ph/0210430 [hep-ph]

    Article  ADS  Google Scholar 

  21. V. Braun, R.J. Fries, N. Mahnke, E. Stein, Higher twist distribution amplitudes of the nucleon in QCD. Nucl. Phys. B 589(1–2), 381–409 (2000). https://doi.org/10.1016/s0550-3213(00)00516-2

    Article  ADS  Google Scholar 

  22. V. Braun, R.J. Fries, N. Mahnke, E. Stein, Higher twist distribution amplitudes of the nucleon in QCD. Nucl. Phys. B 589, 381–409 (2000). https://doi.org/10.1016/S0550-3213(00)00516-2. arXiv:hep-ph/0007279 [hep-ph]. [Erratum: Nucl. Phys.B607,433(2001)]

    Article  ADS  Google Scholar 

  23. S.J. Brodsky, H.-C. Pauli, S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone. Phys. Rept. 301, 299–486 (1998). https://doi.org/10.1016/S0370-1573(97)00089-6. arXiv:hep-ph/9705477

    Article  ADS  MathSciNet  Google Scholar 

  24. N. Chouika, C. Mezrag, H. Moutarde, J. Rodríguez-Quintero, A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities. Phys. Lett. B 780, 287–293 (2018). https://doi.org/10.1016/j.physletb.2018.02.070. arXiv:1711.11548 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  25. M. Diehl, Generalized parton distributions. Phys. Rept. 388, 41–277 (2003). https://doi.org/10.1016/j.physrep.2003.08.002. arXiv:hep-ph/0307382 [hep-ph]

    Article  Google Scholar 

  26. M. Diehl, T. Feldmann, R. Jakob, P. Kroll, The Overlap representation of skewed quark and gluon distributions. Nucl. Phys. B 596, 33–65 (2001). https://doi.org/10.1016/S0550-3213(00)00684-2. arXiv:hep-ph/0009255 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  27. X.-D. Ji, Off forward parton distributions. J. Phys. G24, 1181–1205 (1998). https://doi.org/10.1088/0954-3899/24/7/002. arXiv:hep-ph/9807358 [hep-ph]

    Article  ADS  Google Scholar 

  28. A.V. Radyushkin, Symmetries and structure of skewed and double distributions. Phys. Lett. B 449, 81–88 (1999). https://doi.org/10.1016/S0370-2693(98)01584-6. arXiv:hep-ph/9810466 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Ministerio Español de Ciencia e Innovación under grant No. PID2019-107844GB-C22; the Junta de Andalucía under contract Nos. Operativo FEDER Andalucía 2014-2020 UHU-1264517, P18-FR-5057 and also PAIDI FQM-370. This work is supported in part in the framework of the GLUODYNAMICS project funded by the “P2IO LabEx (ANR-10-LABX-0038)” in the framework “Investissements d’Avenir” (ANR-11-IDEX-0003-01) managed by the Agence Nationale de la Recherche (ANR), France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Riberdy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riberdy, M., Mezrag, C. & Segovia, J. Toward a Three-Quark Model for Nucleon GPDs. Few-Body Syst 64, 41 (2023). https://doi.org/10.1007/s00601-023-01823-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01823-y

Navigation