Skip to main content
Log in

Possible Molecular Explanation for the Resonance \(\varvec{Y}\) (4500)

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The BESIII collaboration has discovered a new state with hidden charm-strange. Its mass is intriguingly close to the \( D_s(1968) {\bar{D}}_{s1}(2536) \) threshold and does not have the properties of the charmonium states. Working with the QCD sum rules (QCDSR) approach, we test if the charmonium-like structure Y(4500) , detected in the invariant mass spectrum \( K^+ K^-J/\psi \) may be interpreted as an exotic \( D_s(1968) {\bar{D}}_{s1}(2536) \) molecular structure with \( J^{PC}=1^{--} \). Considering the contributions of QCD condensates up to operator dimension ten, we estimate the mass and decay constant of Y(4500) resonance. We get \( m_Y = (4488.35 \pm 11.54) \) MeV in excellent agreement with the meson mass reported by BESIII and \( f_Y=(4.04 \pm 0.36)\times 10^{-3} \) \( \mathrm {GeV^4} \). Our findings indicate that a pseudoscalar-axialvector molecule current can well describe this state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.X. Chen, W. Chen, X. Liu, Y.R. Liu, S.L. Zhu, Rept. Prog. Phys. 86(2), 026201 (2023)

    Article  ADS  Google Scholar 

  2. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.P. Shen, C.E. Thomas, A. Vairo, C.Z. Yuan, Phys. Rept. 873, 1–154 (2020)

    Article  ADS  Google Scholar 

  3. X. Liu, Chin. Sci. Bull. 59, 3815–3830 (2014)

    Article  Google Scholar 

  4. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rept. 639, 1–121 (2016)

    Article  ADS  Google Scholar 

  5. S. Agaev, K. Azizi, H. Sundu, Turk. J. Phys. 44(2), 95–173 (2020)

    Article  Google Scholar 

  6. R.M. Albuquerque, S. Narison, D. Rabetiarivony, G. Randriamanatrika, Nucl. Phys. A 1007, 122113 (2021)

    Article  Google Scholar 

  7. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 106(1), 014019 (2022)

    Article  ADS  Google Scholar 

  8. S. S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 107(5), 054017 (2023)

  9. H. Mutuk, Eur. Phys. J. C 82(12), 1142 (2022)

    Article  ADS  Google Scholar 

  10. S.S. Agaev, K. Azizi, H. Sundu, Eur. Phys. J. Plus 131(10), 351 (2016)

    Article  Google Scholar 

  11. J.Y. Süngü, A. Türkan, E. Veli Veliev, Acta Phys. Polon. B 50, 1501 (2019)

    Article  Google Scholar 

  12. L. Maiani, A.D. Polosa, V. Riquer, Sci. Bull. 66, 1616–1619 (2021)

    Article  Google Scholar 

  13. Q.N. Wang, W. Chen, H.X. Chen, Chin. Phys. C 45(9), 093102 (2021)

    Article  ADS  Google Scholar 

  14. J.Y. Süngü, A. Türkan, H. Sundu, E.V. Veliev, Eur. Phys. J. C 82(5), 453 (2022)

    Article  ADS  Google Scholar 

  15. H. Mutuk, Y. Saraç, H. Gümüs, A. Ozpineci, Eur. Phys. J. C 78(11), 904 (2018)

    Article  ADS  Google Scholar 

  16. H. Sundu, SDU J. Nat. Appl. Sci. 20(3), 448 (2016)

    Google Scholar 

  17. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 95(11), 114003 (2017)

    Article  ADS  Google Scholar 

  18. A. Türkan, H. Dag, Nucl. Phys. A 985, 38–65 (2019)

    Article  ADS  Google Scholar 

  19. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 106(1), 014025 (2022)

    Article  ADS  Google Scholar 

  20. A. Ali, C. Hambrock, W. Wang, Phys. Rev. D 88(5), 054026 (2013)

    Article  ADS  Google Scholar 

  21. J.Y. Süngü, A. Türkan, H. Dağ, E. Veli Veliev, Adv. High Energy Phys. 2019, 8091865 (2019)

    Article  Google Scholar 

  22. K. Azizi, N. Er, Phys. Lett. B 811, 135979 (2020)

    Article  Google Scholar 

  23. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 96(3), 034026 (2017)

    Article  ADS  Google Scholar 

  24. Z.G. Wang, X.S. Yang, Q. Xin, Int. J. Mod. Phys. A 36(27), 2150202 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Tiwari, A. K. Rai, Few Body Syst. 64(2), 20 (2023)

  26. X. Liu, H. Huang, J. Ping, D. Chen, X. Zhu, Eur. Phys. J. C 81(10), 950 (2021)

    Article  ADS  Google Scholar 

  27. B. Aubert et al., BaBar. Phys. Rev. Lett. 95, 142001 (2005)

    Article  ADS  Google Scholar 

  28. T.E. Coan et al., CLEO. Phys. Rev. Lett. 96, 162003 (2006)

    Article  ADS  Google Scholar 

  29. C.Z. Yuan et al., Belle. Phys. Rev. Lett. 99, 182004 (2007)

    Article  ADS  Google Scholar 

  30. M. Ablikim, et al. [BESIII], Chin. Phys. C 46, 11, 111002 (2022)

  31. M. Ablikim, et al. [BESIII], Phys. Rev. Lett. 130(12), 121901 (2023)

  32. F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao, B. S. Zou, Rev. Mod. Phys. 90, 1, 015004 (2018) [erratum: Rev. Mod. Phys. 94, no.2, 029901 (2022)]

  33. E.S. Swanson, Phys. Rept. 429, 243–305 (2006)

    Article  ADS  Google Scholar 

  34. F.L. Wang, X.D. Yang, R. Chen, X. Liu, Phys. Rev. D 104(9), 094010 (2021)

    Article  ADS  Google Scholar 

  35. R. Albuquerque, S. Narison, D. Rabetiarivony, G. Randriamanatrika, Int. J. Mod. Phys. A 33(16), 1850082 (2018)

    Article  ADS  Google Scholar 

  36. F.Z. Peng, M.J. Yan, M. Sánchez Sánchez, M. Pavon Valderrama, Phys. Rev. D 107(1), 01–16 (2023)

    Article  Google Scholar 

  37. X.K. Dong, F.K. Guo, B.S. Zou, Progr. Phys. 41, 65–93 (2021)

    Google Scholar 

  38. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385–447 (1979)

    Article  ADS  Google Scholar 

  39. Z.S. Chen, Z.R. Huang, H.Y. Jin, T.G. Steele, Z.F. Zhang, Chin. Phys. C 46(6), 063102 (2022)

    Article  ADS  Google Scholar 

  40. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rept. 127, 1 (1985)

    Article  ADS  Google Scholar 

  41. R. L. Workman et al. [Particle data group], PTEP 2022, 083C01 (2022)

  42. H.G. Dosch, M. Jamin, S. Narison, Phys. Lett. B 220, 251–257 (1989)

    Article  ADS  Google Scholar 

  43. S. Narison, Nucl. Part. Phys. Proc. 270–272, 143–153 (2016)

    Article  Google Scholar 

  44. J.Z. Wang, X. Liu, Phys. Rev. D 107(5), 054016 (2023)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Süngü.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güngör, E., Sundu, H., Y. Süngü, J. et al. Possible Molecular Explanation for the Resonance \(\varvec{Y}\) (4500). Few-Body Syst 64, 53 (2023). https://doi.org/10.1007/s00601-023-01807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01807-y

Navigation