Skip to main content
Log in

Positron Scattering from Hydrogen Atom in Non-ideal Classical Plasmas

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The effects of the non-ideality (NI) of classical plasmas on the scattering of positron from the ground state of hydrogen atom have been investigated by solving coupled multi-channel two-body Lippmann–Schwinger equations. Elastic \(e^+-H(1s)\) amplitude, Ps(1s) formation amplitude and elastic \(p-Ps(1s)\) amplitude are calculated by considering the coupling of \(e^+-H(1s)\) and \(p-Ps(1s)\) channels. A pseudopotential which is a function of the Debye length and NI parameter is used to describe the effective interaction potential in non-ideal classical plasmas (NICP). Precise eigenfunctions of H(1s) and Ps(1s) under NICP, obtained within the framework of Rayleigh-Ritz variational principle, are used to evaluate the scattering amplitudes. A comprehensive study is made on the changes brought about in the differential and the total cross sections for the \(e^+-H(1s)\) elastic scattering, \(p-Ps(1s)\) elastic scattering and Ps(1s) formation due to the variation of the NI parameter over a wide range. It is found that the differential cross section for Ps(1s) formation possesses some rich structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. R.J. Drachman, AIP Conf. Proc. 360, 369 (1996)

    ADS  Google Scholar 

  2. N. Guessoum, Eur. Phys. J. D 68, 137 (2014)

    ADS  Google Scholar 

  3. N. Guessoum, P. Jean, W. Gillard, Astron. Astrophys. 436, 171 (2005)

    ADS  Google Scholar 

  4. F. Frontera, E. Virgilli, C. Guidorzi, P. Rosati, R. Diehl, T. Siegert, C. Fryer, L. Amati, N. Auricchio, R. Campana, E. Caroli, F. Fuschino, C. Labanti, M. Orlandini, E. Pian, J.B. Stephen, S.D. Sordo, C.B. Jorgensen, I. Kuvvetli, S. Brandt, R.M.C. Silva, P. Laurent, E. Bozzo, P. Mazzali, M.D. Valle, Exp. Astron. 51, 1175 (2021)

    ADS  Google Scholar 

  5. D. Hooper, L.-T. Wang, Phys. Rev. D 70, 063506 (2004)

    ADS  Google Scholar 

  6. C. Picciotto, M. Pospelov, Phys. Lett. B 605, 15 (2005)

    ADS  Google Scholar 

  7. D.P. Finkbeiner, N. Weiner, Phys. Rev. D 76, 083519 (2007)

    ADS  Google Scholar 

  8. M. Pospelov, A. Ritz, Phys. Lett. B 651, 208 (2007)

    ADS  Google Scholar 

  9. G. Laricchia, A. J. Garner, K. Paludan, Supercomputing, Collision Processes and Applications ed. K. L. Bell, K. A. Berrington, D.S.F. Crothers, A. Hibbert, K.T. Taylor (Plenum Publishers, New York, 1999)

  10. K. Ratnavelu, M.J. Brunger, S.J. Buckman, J. Phys. Chem. 48, 023102 (2019)

    Google Scholar 

  11. A.S. Ghosh, N.C. Sil, P. Mandal, Phys. Rep. 87, 313 (1982)

    ADS  Google Scholar 

  12. A.S. Kadyrov, I. Bray, J. Phys. B 49, 222002 (2016)

    ADS  Google Scholar 

  13. S.J. Ward, AIP Conf. Proc. 295, 466 (1993)

    ADS  Google Scholar 

  14. L. Chiari, A. Zecca, Eur. Phys. J. D 68, 297 (2014)

    ADS  Google Scholar 

  15. Y.D. Jung, Phys. Plasmas 4, 21 (1997)

    ADS  Google Scholar 

  16. A. Ghoshal, Y.K. Ho, Eur. Phys. J. D 55, 581 (2009)

    ADS  Google Scholar 

  17. S. Sen, P. Mandal, P.K. Mukherjee, Eur. Phys. J. D 62, 379 (2011)

    ADS  Google Scholar 

  18. S. Sen, P. Mandal, P.K. Mukherjee, Eur. Phys. J. D 66, 230 (2012)

    ADS  Google Scholar 

  19. J. Ma, Y. Cheng, Y.C. Wang, Y. Zhou, Phys. Plasmas 19, 063303 (2012)

    ADS  Google Scholar 

  20. Z. Jiang, Y.Z. Zhang, S. Kar, Phys. Plasmas 22, 052105 (2015)

    ADS  Google Scholar 

  21. Y. Ning, Z.C. Yan, Y.K. Ho, Phys. Plasmas 22, 013302 (2015)

    ADS  Google Scholar 

  22. R.K. Janev, S. Zhang, J. Wang, Matter. Radiat. Extremes 1, 237 (2016)

    Google Scholar 

  23. M.K. Pandey, Y.C. Lin, Y.K. Ho, J. Phys. B 49, 034007 (2016)

    ADS  Google Scholar 

  24. S.B. Zhang, Y.Y. Qi, Y.Z. Qu, X.J. Chen, Chin. Phys. Lett. 27, 013401 (2010)

    ADS  Google Scholar 

  25. P. Rej, A. Ghoshal, Phys. plasmas 24, 043506 (2017)

    ADS  Google Scholar 

  26. P. Rej, A. Ghoshal, J. Phys. B 49, 125203 (2016)

    ADS  Google Scholar 

  27. A. Ghoshal, Y.K. Ho, Eur. Phys. J. D 70, 265 (2016)

    ADS  Google Scholar 

  28. A. Ghoshal, Y.K. Ho, Phys. Rev. A 95, 052502 (2017)

    ADS  Google Scholar 

  29. A. Ghoshal, Y.K. Ho, J. Phys. B 50, 075001 (2017)

    ADS  Google Scholar 

  30. A. Ghoshal, Y.K. Ho, Few-Body Syst. 58, 138 (2017)

    ADS  Google Scholar 

  31. B. Das, P. Rej, M.Z.M. Kamali, A. Ghoshal, Jurnal Fizik Malaysia 39, 30001 (2018)

    Google Scholar 

  32. A. Ghoshal, Y.K. Ho, Jurnal Fizik Malaysia 39, 20001 (2018)

    Google Scholar 

  33. N. Masanta, A. Ghoshal, Y.K. Ho, Indian J. Phys. 94, 1495 (2020)

    ADS  Google Scholar 

  34. N. Masanta, A. Ghoshal, Chin. J. Phys. 71, 273 (2021)

    Google Scholar 

  35. N. Masanta, A. Ghoshal, Few-Body Syst. 62, 95 (2021)

    ADS  Google Scholar 

  36. V.E. Fortov, I.T. Yakubov, Physics of Nonideal Plasma (World Scientific, Singapore, 2000)

    Google Scholar 

  37. E.F. Brown, ApJ 531, 988 (2000)

    ADS  Google Scholar 

  38. L. Bildsten, D.M. Hall, ApJ 549, L219 (2001)

    ADS  Google Scholar 

  39. E.F. Brown, L. Bildsten, P. Chang, ApJ 574, 920 (2002)

    ADS  Google Scholar 

  40. F. Peng, E.F. Brown, J.W. Truran, ApJ 654, 1022 (2007)

    ADS  Google Scholar 

  41. J. Hughto, A.S. Schneider, C.J. Horowitz, D.K. Berry, Phys. Rev. E 82, 066401 (2010)

    ADS  Google Scholar 

  42. J.J. Fortney, N. Nettelmann, Space Sci. Rev. 152, 423 (2010)

    ADS  Google Scholar 

  43. M. French, A. Becker, W. Lorenzen, N. Nettelmann, M. Bethkenhagen, J. Wicht, R. Redmer, Astrophys. J. Suppl. Ser. 202, 5 (2012)

    ADS  Google Scholar 

  44. S.M. Vinko, O. Ciricosta, B.I. Cho, K. Engelhorn, H.K. Chung, C.R.D. Brown, T. Burian, J. Chalupsky, R.W. Falcone, C. Graves, V. Hajkova, A. Higginbotham, L. Juha, J. Krzywinski, H.J. Lee, M. Messerschmidt, C.D. Murphy, Y. Ping, A. Scherz, W. Schlotter, S. Toleikis, J.J. Turner, L. Vysin, T. Wang, B. Wu, U. Zastrau, D. Zhu, R.W. Lee, P.A. Heimann, B. Nagler, J.S. Wark, Nature 482, 59 (2012)

    ADS  Google Scholar 

  45. A. Grinenko, V.T. Gurovich, A. Saypin, S. Efimov, Y.E. Krasik, V.I. Oreshkin, Phys. Rev. E 72, 066401 (2005)

    ADS  Google Scholar 

  46. H. Totsuji, Contrib. Plasma Phys. 52, 74 (2012)

    ADS  Google Scholar 

  47. F.B. Baimbetov, Kh.T. Nurekenov, T.S. Ramazanov, Phys. Lett. A 202, 211 (1995)

    ADS  Google Scholar 

  48. A. Karmakar, A. Ghoshal, Phys. Plasmas 26, 123504 (2019)

    ADS  Google Scholar 

  49. B. Das, A. Karmakar, A. Ghoshal, Phys. Plasmas 26, 083507 (2019)

    ADS  Google Scholar 

  50. B. Das, A. Ghoshal, Phys. Rev. E 101, 043202 (2020)

    ADS  Google Scholar 

  51. K. Das, P. Rej, A. Ghoshal, Contrib. Plasma Phys. 60, e202000080 (2020)

    Google Scholar 

  52. B. Das, A. Ghoshal, Phys. Plasmas 28, 023506 (2021)

    Google Scholar 

  53. B. Das, A. Ghoshal, Few-Body Syst. 61, 22 (2020)

    ADS  Google Scholar 

  54. K.D. Sen, K. Kumar, C. Yadav, V. Prasad, Eur. Phys. J. Plus 137, 78 (2022)

    Google Scholar 

  55. B. Das, A. Ghoshal, Int. J. Quantum Chem. 121, e26649 (2021)

    Google Scholar 

  56. B. Das, A. Ghoshal, Phys. Plasmas 28, 123520 (2021)

    ADS  Google Scholar 

  57. Y.D. Jung, Eur. Phys. J. D 12, 351 (2000)

    ADS  Google Scholar 

  58. I.H. Sloan, E.J. More, J. Phys. B (Proc. Phys. Soc.) 1, 414 (1968)

    ADS  Google Scholar 

  59. A. Ghoshal, P. Mandal, Phys. Rev. A 72, 032714 (2005)

    ADS  Google Scholar 

  60. A. Ghoshal, P. Mandal, Phys. Rev. A 72, 042710 (2005)

    ADS  Google Scholar 

  61. S. Ichimaru, Basic Principles of Plasma Physics: A Statistical Approach (CRS Press, 2018)

  62. D. Basu, G. Banerji, A.S. Ghosh, Phys. Rev. A 13, 1381 (1976)

    ADS  Google Scholar 

  63. A.A. Kernoghan, D.J.R. Robinsony, M.T. McAlindenz, H.R.J. Walters, J. Phys. B 29, 2089 (1996)

    ADS  Google Scholar 

  64. A. Ghoshal, M.Z.M. Kamali, K. Ratnavelu, Phys. Plasmas 20, 013506 (2013)

    ADS  Google Scholar 

  65. A.J. Makowski, A. Raczynski, G. Staszewska, J. Phys. B 19, 3367 (1986)

    ADS  Google Scholar 

  66. G. Banerji, A.S. Ghosh, N.C. Sil, Phys. Rev. A 7, 571 (1973)

    ADS  Google Scholar 

  67. R.J. Drachman, K. Omidvar, Phys. Rev. A 14, 100 (1976)

    ADS  Google Scholar 

  68. S. Zhou, H. Li, W.E. Kauppila, C.K. Kwan, T.S. Stein, Phys. Rev. A 55, 361 (1997)

    ADS  Google Scholar 

  69. T.S. Stein, J. Jiang, W.E. Kauppila, C.K. Kwan, H. Li, A. Surdutovich, S. Zhou, Can. J. Phys. 74, 313 (1996)

    ADS  Google Scholar 

  70. I. Bray, A.T. Stelbovics, Phys. Rev. A 49, R2224 (1994)

    ADS  Google Scholar 

  71. S. Zhou, W.E. Kauppila, C.K. Kwan, T.S. Stein, Phys. Rev. Lett. 72, 1443 (1994)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the support received from DST FIST programme (File No. SR/FST/ MSII/ 2017/ 10(C)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Ghoshal.

Ethics declarations

Conflict of interest

There is no conflict of interest in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Das, B. & Ghoshal, A. Positron Scattering from Hydrogen Atom in Non-ideal Classical Plasmas. Few-Body Syst 64, 19 (2023). https://doi.org/10.1007/s00601-023-01801-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01801-4

Navigation