Skip to main content
Log in

Spectroscopic Study of \(\pmb {\varOmega _{cc}}\), \(\pmb {\varOmega _{cb}}\) and \(\pmb {\varOmega _{bb}}\) Baryons

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this paper, we presented the mass spectra of the doubly heavy \(\varOmega \) baryons containing one light (strange) quark and two heavy (charm and bottom) quarks. Our predicted masses can be considered to determine the \(J^p\) value for the resonances detected by experimental facilities in future. The masses of ground and excited states (1 S-6 S, 1P-3P, 1D-2D, 1F-2F) are calculated for all possible \(J^p\) values, using the Hypercentral Constituent Quark Model (hCQM), by employing screened potential as confining potential with color-Coulomb potential. Regge trajectories are also plotted in \((J, M^2)\) plane for natural and unnatural parities. Doubly heavy Omega states are not declared yet by any experimental facility. We compared our results to the predictions gained from other theoretical approaches, and we found that our predictions are quite close to those of them. Other properties such as magnetic moment (for spin state \(\frac{1}{2}\) and \(\frac{3}{2}\)) and radiative decay width are calculated using the enumerated masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Koshkarev et al., SELEX collaboration. Phys. Lett. B 765, 171 (2017)

    ADS  Google Scholar 

  2. B. Aubert et al., BABAR collaboration. Phys. Rev. D 74, 011103 (2006)

    ADS  Google Scholar 

  3. R. Aaij et al., Belle colaboration. J. High Energy Phys. 12, 090 (2013)

    ADS  Google Scholar 

  4. Y. Kato et al., Belle collaboration. Phys. Rev. D 89, 052003 (2014)

    ADS  Google Scholar 

  5. S.P. Ratti et al., FOCUS collaboration. Nucl. Phys. Proc. Suppl. 115, 33 (2003)

    ADS  Google Scholar 

  6. R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

  7. R. Aaij et al., Chin. Phys. C 45, 093002 (2021)

    ADS  Google Scholar 

  8. Z. Shah, A. Kakadiya, K. Gandhi, A.K. Rai, Universe 7, 337 (2021)

    ADS  Google Scholar 

  9. A. Kakadiya, Z. Shah, K. Gandhi, A.K. Rai, Few-Body Syst. 63, 29 (2022)

    ADS  Google Scholar 

  10. A. Kakadiya, Z. Shah, A.K. Rai, Int. J. Mod. Phys. A 37, 2250053 (2022)

    ADS  Google Scholar 

  11. T.M. Aliev, K. Simsek, Eur. Phys. J. C 80, 976 (2020)

    ADS  Google Scholar 

  12. H.I. Alrebdi, T.M. Aliev, K. Simsek, Phys. Rev. D 102, 074007 (2020)

    ADS  MathSciNet  Google Scholar 

  13. Q. Li, C.H. Chang, S.X. Qin, G.L. Wang, Chin. Phys. C 44, 013102 (2020)

    ADS  Google Scholar 

  14. Z. Shah, A.K. Rai, Eur. Phys. J. C 77, 129 (2017)

    ADS  Google Scholar 

  15. Z. Shah, K. Thakkar, A.K. Rai, Eur. Phys. J. C 76, 530 (2016)

    ADS  Google Scholar 

  16. N. Salehi, Acta Phys. Polon. B 50, 735–752 (2019)

    ADS  MathSciNet  Google Scholar 

  17. T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Phys. Rev. D 92, 114029 (2015)

    ADS  Google Scholar 

  18. W. Roberts, M. Pervin, Int. J. Modern Phys. A 23, 2817 (2008)

    ADS  Google Scholar 

  19. A. Valcarce, H. Garcilazo, J. Vijande, Eur. Phys. J. A 37, 217 (2008)

    ADS  Google Scholar 

  20. D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Rev. D 66, 014008 (2002)

    ADS  Google Scholar 

  21. F. Giannuzzi, Phys. Rev. D 79, 094002 (2002)

    ADS  Google Scholar 

  22. J. Oudichhya, K. Gandhi, A.K. Rai, Phys. Rev. D 103, 114030 (2021)

    ADS  Google Scholar 

  23. J. Oudichhya, K. Gandhi, A.K. Rai, Phys. Rev. D 104, 114027 (2021)

    ADS  Google Scholar 

  24. M. Karliner, J.L. Rosner, Phys. Rev. D 97, 094006 (2018)

    ADS  Google Scholar 

  25. H. Z. Tong and H. S. Li, arXiv:2110.01380v2 [hep-ph]

  26. N. Mathur, M. Padmanath, S. Mondal, Phys. Rev. Lett. 121, 202002 (2018)

    ADS  Google Scholar 

  27. N. Mathur, R. Lewis, R.M. Woloshyn, Phys. Rev. D 66, 014502 (2002)

    ADS  Google Scholar 

  28. P. Mohanta, S. Basak, Phys. Rev. D 101, 094503 (2020)

    ADS  Google Scholar 

  29. A. Kakadiya, C. Menapara, A. K. Rai, arXiv:2204.13438 [hep-ph], (2022)

  30. A. Kakadiya, Z. Shah, A.K. Rai, Int. J. Mod. Phys. A (2022). https://doi.org/10.1142/S0217751X22502256

    Article  Google Scholar 

  31. K. Gandhi, A. Kakadiya, Z. Shah, and A. K. Rai,In Proceedings of 3rd International Conference on Condenced Matter and Applied Physics AIP Conference Proceedings 2220 (2020)), 140015

  32. A. Kakadiya, K. Gandhi, A. K. Rai, Orbitally excitation of \(\Lambda _b^0\) baryon, in Proc. 64th DAE BRNS Symposyum on Nuclear Physics, (Lucknow, Uttar Pradesh, 2019), p. 697

  33. M.M. Giannini, E. Santopinto, Hypercentral constituent quark model. In: AIP Conference Proceedings 1488(1), 257–265 (2012)

  34. M.M. Giannini, E. Santopinto, Chin. J. Phys. 53, 020301 (2015)

    Google Scholar 

  35. R. Bijkar, F. Iachello, A. Leviatan, Ann. Phys. 284, 89 (2000)

    ADS  Google Scholar 

  36. R. Bijkar, F. Iachello, A. Laviatan, Ann. Phys. 236, 69 (1994)

    ADS  Google Scholar 

  37. M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008)

    ADS  Google Scholar 

  38. K. Thakkar, Z. Shah, A.K. Rai, P.C. Vinodkumar, Nucl. Phys. A 965, 57 (2017)

    ADS  Google Scholar 

  39. K. Gandhi, Z. Shah, A.K. Rai, Eur. Phys. J. Plus 133, 512 (2018)

    Google Scholar 

  40. K. Gandhi, Z. Shah, A.K. Rai, Int. J. Theor. Phys. 59, 1129–1156 (2020)

    Google Scholar 

  41. W. Lucha, F. Schoberls, Int. J. Mod. Phys. C 10, 607 (1999)

    ADS  Google Scholar 

  42. K. Gandhi, Z. Shah, A.K. Rai, Eur. Phys. J. Plus 133, 512 (2018)

    Google Scholar 

  43. B. Patel, A.K. Rai, P.C. Vinodkumar, J. Phys. G 35, 065001 (2008)

    ADS  Google Scholar 

  44. A. Bernotas, V. Simonis, Phys. Rev. D 87, 074016 (2013)

    ADS  Google Scholar 

  45. C. Albertus, E. Hernandez, J. Nieves, J.M. Verde-Velasco, Eur. Phys. J. A 32, 183 (2007)

    ADS  Google Scholar 

  46. A. Hazra, S. Rakshit, R. Dhir, Phys. Rev. D 104, 053002 (2021)

    ADS  Google Scholar 

  47. Z. Shah, K. Thakkar, A.K. Rai, P.C. Vinodkumar, Chin. Phys. C 40, 123102 (2016)

    ADS  Google Scholar 

  48. A. Majethiya, B. Patel, P.C. Vinodkumar, Eur. Phys. J. A 42, 213 (2009)

    ADS  Google Scholar 

  49. H.S. Li, L. Meng, Z.W. Liu, S.L. Zhu, Phys. Lett. B 777, 169–176 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Myself is a student of Dr. A. K. Rai. I have prepared a manuscript and Dr. A. K. Rai has checked this manuscript.

Corresponding author

Correspondence to Amee Kakadiya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakadiya, A., Rai, A.K. Spectroscopic Study of \(\pmb {\varOmega _{cc}}\), \(\pmb {\varOmega _{cb}}\) and \(\pmb {\varOmega _{bb}}\) Baryons. Few-Body Syst 64, 17 (2023). https://doi.org/10.1007/s00601-023-01796-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01796-y

Navigation