Skip to main content
Log in

The Dunkl–Duffin–Kemmer–Petiau Oscillator

  • Published:
Few-Body Systems Aims and scope Submit manuscript

A Correction to this article was published on 03 June 2022

This article has been updated

Abstract

In the context of the Dunkl derivative, we present the Dunkl–Duffin–Kemmer–Petiau oscillator (DDKPO) model of spin 0 and 1. For the spin 0 case , the exact solutions are determined, the wave functions are obtained using Cartesian and polar coordinates in the general form for the different eigenvalues of the reflection operators, and the corresponding spectrum energies are deduced. For the spin 1 case, the problem is complicated by the direct method, we obtain a differential equation of order four and we limit ourselves only to the study of the non-relativistic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. M. Moshinsky, A. Szczepaniak, The Dirac oscillator. J. Phys. A 22, L817 (1989). https://doi.org/10.1088/0305-4470/22/17/002

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Beckers, N. Debergha, A.G. Nikitin, On pararelativistic quantum oscillators. J. Math. Phys 33, 3387 (1992). https://doi.org/10.1063/1.529886

    Article  ADS  MathSciNet  Google Scholar 

  3. Y. Nedjadi, R.C. Barrett, The Duffin–Kemmer–Petiau oscillator. J. Phys. A Math. Gen. 27, 4301 (1994). https://doi.org/10.1088/0305-4470/27/12/033

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Y. Nedjadi, R.C. Barrett, A generalized Duffin–Kemmer–Petiau oscillator. J. Phys. A Math. Gen. 31, 6717 (1998). https://doi.org/10.1088/0305-4470/31/31/016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Y. Nedjadi, S. Ait-Tahar, R.C. Barrett, An extended relativistic quantum oscillator for particles. J. Phys. A Math. Gen. 31, 3867 (1998). https://doi.org/10.1088/0305-4470/31/16/014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. D.A. Kulikov, R.S. Tutik, A.P. Yaroshenko, An alternative model for the Duffin–Kemmer–Petiau oscillator. Mod. Phys. Lett A 26, 12 (2005). https://doi.org/10.1142/S0217732305016324

    Article  MathSciNet  MATH  Google Scholar 

  7. V.V. Dvoeglazov, A.S. del Mesa, Notes on oscillator-like interactions of various spin relativistic particles, in NASA Conference Publication, vol. 3286, p. 333 (1994)

  8. I. Boztosun, M. Karakoc, F. Yasuk, A. Durmus, Asymptotic iteration method solutions to the relativistic Duffin–Kemmer–Petiau equation. J. Math. Phys. 47, 062301 (2006). https://doi.org/10.1063/1.2203429

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. H. Chen, Z.W. Long, Y. Yang, Z.L. Zhao, C.Y. Lo, The study of the generalized boson oscillator in a chiral conical space time. Int. J. Mod. Phys A. 35, 2050107 (2020). https://doi.org/10.1142/S0217751X20501079

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Falek, M. Merad, DKP oscillator in a noncommutative space. Commun. Theor. Phys. 50, 587 (2008). https://doi.org/10.1088/0253-6102/50/3/10

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Z. Wang, Z.W. Long, C.Y. Long, W. Zhang, On the thermodynamic properties of the spinless Duffin–Kemmer–Petiau oscillator in noncommutative plane. Adv. High. Energy Phys. Article ID 901675 (2015). https://doi.org/10.1155/2015/901675

  12. M. Falek, M. Merad, Bosonic oscillator in the presence of minimal length. J. Math. Phys 50, 023508 (2009). https://doi.org/10.1063/1.3076900

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. Falek, M. Merad, A generalized bosonic oscillator in the presence of a minimal length. J. Math. Phys 51, 033516 (2010). https://doi.org/10.1063/1.3326236

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. H. Chen, Z.W. Long, Z.L. Zhao, C.Y. Long, Effects of generalized uncertainty principle on the (1+1)Dimensional DKP oscillator with linear potential. Few Body Syst. 61, 11 (2020). https://doi.org/10.1007/s00601-020-1542-8

    Article  ADS  Google Scholar 

  15. S.R. Wu, Z.W. Long, C.Y. Long, B.Q. Wang, Y. Liu, Effects of generalized uncertainty principle on the two-dimensional DKP oscillator. Eur. Phys. J. Plus 132, 186 (2017). https://doi.org/10.1140/epjp/i2017-11447-3

    Article  Google Scholar 

  16. M. Falek, M. Merad, T. Birkandan, Duffin–Kemmer–Petiau oscillator with Snyder-de Sitter algebra. J. Math. Phys. 58, 023501 (2017). https://doi.org/10.1063/1.4975137

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M. Falek, M. Merad, M. Moumni, Bosonic oscillator under a uniform magnetic field with Snyder–de Sitter algebra. J. Math. Phys. 60, 013505 (2019). https://doi.org/10.1063/1.5043472

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Hosseinpour, H. Hassanabadi, F.M. Andrade, The DKP oscillator with a linear interaction in the cosmic string space–time. Eur. Phys. J. C 78, 93 (2018). https://doi.org/10.1140/epjc/s10052-018-5574-x

    Article  ADS  Google Scholar 

  19. B.-Q. Wang, Z.-W. Long, C.-Y. Long, S.-R. Wu, Solution of the spin-one DKP oscillator under an external magnetic field in noncommutative space with minimal length. Chin. Phys. B 27, 010301 (2018). https://doi.org/10.1088/1674-1056/27/1/010301

    Article  ADS  Google Scholar 

  20. A. Boumali, N. Messai, Exact solutions of a two-dimensional Duffin–Kemmer–Petiau oscillator subject to a Coulomb potential in the gravitational field of cosmic string. Can. J. Phys 95, 999 (2017). https://doi.org/10.1139/cjp-2016-0800

    Article  ADS  Google Scholar 

  21. Y. Chargui, On the Duffin–Kemmer–Petiau equation with linear potential in the presence of a minimal length. Phys. Lett. A 382, 949 (2018). https://doi.org/10.1016/j.physleta.2018.02.008

    Article  ADS  MathSciNet  Google Scholar 

  22. B. Hamil, M. Merad, T. Birkandan, Phys. Scr. 95, 075309 (2020)

    Article  ADS  Google Scholar 

  23. M. Hadj Moussa, M. Merad, A. Merad, Bosonic oscillator on the de Sitter and the Anti-de Sitter spaces. Few Body Syst. 60, 53 (2019). https://doi.org/10.1007/s00601-019-1522-z

    Article  ADS  Google Scholar 

  24. L.M. Yang, A note on the quantum rule of the harmonic oscillator. Phys. Rev. 84, 788 (1951). https://doi.org/10.1103/PhysRev.84.788

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. C.F. Dunkl, Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167 (1989). https://doi.org/10.1090/S0002-9947-1989-0951883-8

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions Lecture Notes in Mathematics, vol. 1817, ed. by E. Koelink, W. Van Assche (Springer, Berlin, 2003). https://doi.org/10.1007/3-540-44945-0_3

    Chapter  Google Scholar 

  27. L. Lapointe, L. Vinet, Exact operator solution of the Calogero–Sutherland model. Commun. Math. Phys. 178(2), 425 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Kempf, J. Math. Phys. 35, 4483 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  29. F.H. Stillinger, J. Math. Phys. 18, 1224–1234 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Zubair, M. Mughal, Q.A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space (Springer, Berlin, Heidelberg, 2012). ISBN 978-3-642-25358-4

  31. V.X. Genest, L. Vinet, A. Zhedanov, The singular and the 2:1 anisotropic Dunkl oscillators in the plane. J. Phys. A Math. Theor. 46, 325201 (2013). https://doi.org/10.1088/1751-8113/46/32/325201

    Article  MathSciNet  MATH  Google Scholar 

  32. V.X. Genest, M.E.H. Ismail, L. Vinet, A. Zhedanov, The Dunkl oscillator in the plane: I. Superintegrability, separated wavefunctions and overlap coefficients. J. Phys. A Math. Theor. 46, 145201 (2013). https://doi.org/10.1088/1751-8113/46/14/145201

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. V.X. Genest, M.E.H. Ismail, L. Vinet, A. Zhedanov, The Dunkl oscillator in the plane II: representations of the symmetry algebra. Commun. Math. Phys. 329, 999 (2014). https://doi.org/10.1007/s00220-014-1915-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. V.X. Genest, A. Lapointe, L. Vinet, The Dunkl–Coulomb problem in the plane. Phys. Lett. A 379, 923 (2015). https://doi.org/10.1016/j.physleta.2015.01.023

    Article  MathSciNet  MATH  Google Scholar 

  35. V.X. Genest, L. Vinet, A. Zhedanov, The Dunkl oscillator in three dimensions. J. Phys. Conf. Ser. 512, 012010 (2014). https://doi.org/10.1088/1742-6596/512/1/012010

    Article  Google Scholar 

  36. R.D. Mota, D. Ojeda-Guillén, M. Salazar-Ramırez, V.D. Granados, Exact solution of the relativistic Dunkl oscillator \(\left(2+1\right) \) in dimensions. Ann. Phys. 411, 167964 (2019). https://doi.org/10.1016/j.aop.2019.167964

    Article  MathSciNet  MATH  Google Scholar 

  37. W.S. Chung, H. Hassanabadi, One-dimensional quantum mechanics with Dunkl derivative. Mod. Phys. Lett. A 34, 1950190 (2019). https://doi.org/10.1142/S0217732319501906

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. L. Chetouani, M. Merad, T. Boudjedaa, A. Lecheheb, Solution of Duffin–Kemmer–Petiau equation for the step potential. Int. J. Theor. Phys. 43, 1147 (2004). https://doi.org/10.1023/B:IJTP.0000048606.29712.13

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Merad, H. Bada, A. Lecheheb, DKP particle in time-dependent field. Czech. J. Phys. 56, 765 (2006). https://doi.org/10.1007/s10582-006-0129-z

    Article  ADS  Google Scholar 

  40. J.M. Jauch, E.L. Hill, On the problem of degeneracy in quantum mechanics. Phys. Rev. 57, 641–645 (1940). https://doi.org/10.1103/PhysRev.57.641

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. V.A. Dulock, H.V. McIntosh, On the degeneracy of the two-dimensional harmonic oscillator. Am. J. Phys. 33, 109 (1965). https://doi.org/10.1119/1.1971258

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank the referees for their useful comments which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Merad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We expose an explicit representation of \(\beta ^{\mu }\) matrices ,

  • For the case of spin 0, the form of the \(\beta ^{\mu }\) is given by

    $$\begin{aligned} \beta ^{0}=\left( \begin{array} [c]{ll} \theta &{} \quad \mathbf {0}\\ \mathbf {0} &{} \quad \mathbf {0} \end{array} \right) ,\ \text {and }\ \ \beta ^{i}=\left( \begin{array} [c]{ll} \mathbf {0} &{} \quad \rho ^{i}\\ -\rho _{T}^{i} &{} \quad \mathbf {0} \end{array} \right) ,i=1,2,3 \end{aligned}$$
    (63)

    where

    $$\begin{aligned} \ \ \theta =\left( \begin{array} [c]{ll} 0 &{} \quad 1\\ 1 &{} \quad 0 \end{array} \right) \end{aligned}$$
    (64)

    and

    $$\begin{aligned} \rho ^{1}=\left( \begin{array} [c]{ccc} -1 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 0 \end{array} \right) ,\rho ^{2}=\left( \begin{array} [c]{ccc} 0 &{} -1 &{} 0\\ 0 &{} 0 &{} 0 \end{array} \right) ,\rho ^{3}=\left( \begin{array} [c]{ccc} 0 &{} \quad 0 &{} \quad -1\\ 0 &{} \quad 0 &{} \quad 0 \end{array} \right) \end{aligned}$$
    (65)

    with \(\rho _{T}\) denotes the transposed matrix of \(\rho \) and \(\mathbf {0}\) is the zero matrix.

  • For the case of spin 1,  the form of the \(\beta ^{\mu }\) is given as

    $$\begin{aligned} \beta ^{0}=\left( \begin{array} [c]{cccc} 0 &{} \quad \overline{0} &{} \quad \overline{0} &{} \quad \overline{0}\\ \overline{0}^{T} &{} \quad \mathbf {0} &{} \quad \mathbf {1} &{} \quad \mathbf {0}\\ \overline{0}^{T} &{} \quad \mathbf {1} &{} \quad \mathbf {0} &{} \quad \mathbf {0}\\ \overline{0}^{T} &{} \quad \mathbf {0} &{} \quad \mathbf {0} &{} \quad \mathbf {0} \end{array} \right) \text { and }\ \ \beta ^{i}=\left( \begin{array} [c]{cccc} 0 &{} \quad \overline{0} &{} \quad e_{i} &{} \quad \overline{0}\\ \overline{0}^{T} &{} \quad \mathbf {0} &{} \quad \mathbf {0} &{} -is_{i}\\ -e_{i}^{T} &{} \quad \mathbf {0} &{} \quad \mathbf {0} &{} \quad \mathbf {0}\\ \overline{0}^{T} &{} \quad -is_{i} &{} \quad \mathbf {0} &{} \quad \mathbf {0} \end{array} \right) i=1,2,3 \end{aligned}$$
    (66)

    where the matrices \(s_{i}\) are the standard \((3\times 3)\) spin 1 matrices and, \(\mathbf {0}\) and \(\mathbf {1}\) denote respectively the zero matrix and the unity matrix. The matrices \(\overline{0}\) and \(e_{i}\) are given as

    $$\begin{aligned} \overline{0}=\left( \begin{array} [c]{ccc} 0&\quad 0&\quad 0 \end{array} \right) ,e_{1}=\left( \begin{array} [c]{ccc} 1&\quad 0&\quad 0 \end{array} \right) ,e_{2}=\left( \begin{array} [c]{ccc} 0&\quad 1&\quad 0 \end{array} \right) \text { and }e_{3}=\left( \begin{array} [c]{ccc} 0&\quad 0&\quad 1 \end{array} \right) . \end{aligned}$$
    (67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merad, A., Merad, M. The Dunkl–Duffin–Kemmer–Petiau Oscillator. Few-Body Syst 62, 98 (2021). https://doi.org/10.1007/s00601-021-01683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01683-4

Navigation