Skip to main content
Log in

Systematic Nuclear Uncertainties in the Hypertriton System

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The hypertriton bound state is relevant for inference of knowledge about the hyperon–nucleon (YN) interaction. In this work we compute the binding energy of the hypertriton using the ab initio hypernuclear no-core shell model (NCSM) with realistic interactions derived from chiral effective field theory. In particular, we employ a large family of nucleon–nucleon interactions with the aim to quantify the theoretical precision of predicted hypernuclear observables arising from nuclear-physics uncertainties. The three-body calculations are performed in a relative Jacobi-coordinate harmonic oscillator basis and we implement infrared correction formulas to extrapolate the NCSM results to infinite model space. We find that the spread of the predicted hypertriton binding energy, attributed to the nuclear-interaction model uncertainty, is about 100 keV. In conclusion, the sensitivity of the hypertriton binding energy to nuclear-physics uncertainties is of the same order of magnitude as experimental uncertainties such that this bound-state observable can be used in the calibration procedure to constrain the YN interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.H. Davis, Nucl. Phys. A 754, 3 (2005). https://doi.org/10.1016/j.nuclphysa.2005.01.002

    Article  ADS  Google Scholar 

  2. A. Nogga, Nucl. Phys. A 914, 140 (2013). https://doi.org/10.1016/j.nuclphysa.2013.02.053

    Article  ADS  Google Scholar 

  3. D. Lonardoni, S. Gandolfi, F. Pederiva, Phys. Rev. C 87, 041303 (2013). https://doi.org/10.1103/PhysRevC.87.041303

    Article  ADS  Google Scholar 

  4. R. Wirth, D. Gazda, P. Navrátil, A. Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 113(19), 192502 (2014). https://doi.org/10.1103/PhysRevLett.113.192502

    Article  ADS  Google Scholar 

  5. R. Wirth, D. Gazda, P. Navrátil, R. Roth, Phys. Rev. C 97(6), 064315 (2018). https://doi.org/10.1103/PhysRevC.97.064315

    Article  ADS  Google Scholar 

  6. L. Contessi, N. Barnea, A. Gal, Phys. Rev. Lett. 121(10), 102502 (2018). https://doi.org/10.1103/PhysRevLett.121.102502

    Article  ADS  Google Scholar 

  7. H. Le, J. Haidenbauer, U.G. Meißner, A. Nogga, Eur. Phys. J. A 56(12), 301 (2020). https://doi.org/10.1140/epja/s10050-020-00314-6

    Article  ADS  Google Scholar 

  8. M. Schäfer, B. Bazak, N. Barnea, J. Mareš, Phys. Rev. C 103(2), 025704 (2021). https://doi.org/10.1103/PhysRevC.103.025204

    Article  ADS  Google Scholar 

  9. R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, Phys. Rev. C 92(2), 024005 (2015). https://doi.org/10.1103/PhysRevC.92.024005

    Article  ADS  Google Scholar 

  10. A. Ekström, B.D. Carlsson, K.A. Wendt, C. Forssén, M.H. Jensen, R. Machleidt, S.M. Wild, J. Phys. G Nucl. Particle Phys. 42(3)(2015). https://doi.org/10.1088/0954-3899/42/3/034003

  11. B.D. Carlsson, A. Ekström, C. Forssén, D.F. Strömberg, G.R. Jansen, O. Lilja, M. Lindby, B.A. Mattsson, K.A. Wendt, Phys. Rev. X 6(1), 011019 (2016). https://doi.org/10.1103/PhysRevX.6.011019

  12. R.N. Pérez, J.E. Amaro, E.R. Arriola, J. Phys. G Nucl. Particle Phys. 42(3), 034013 (2015). https://doi.org/10.1088/0954-3899/42/3/034013

    Article  ADS  Google Scholar 

  13. S. Binder, A. Calci, E. Epelbaum, R.J. Furnstahl, J. Golak, K. Hebeler, H. Kamada, H. Krebs, J. Langhammer, S. Liebig, P. Maris, U.G. Meißner, D. Minossi, A. Nogga, H. Potter, R. Roth, R. Skibiński, K. Topolnicki, J.P. Vary, H. Witała, Phys. Rev. C 93, 044002 (2016). https://doi.org/10.1103/PhysRevC.93.044002

    Article  ADS  Google Scholar 

  14. R. Navarro Pérez, J.E. Amaro, E. Ruiz Arriola, P. Maris, J.P. Vary, Phys. Rev. C 92(6), 064003 (2015). https://doi.org/10.1103/PhysRevC.92.064003

  15. B. Acharya, B.D. Carlsson, A. Ekström, C. Forssén, L. Platter, Phys. Lett. B 760, 584 (2016). https://doi.org/10.1016/j.physletb.2016.07.032

    Article  ADS  Google Scholar 

  16. K.A. Wendt, C. Forssén, T. Papenbrock, D. Sääf, Phys. Rev. C 91(6), 061301 (2015). https://doi.org/10.1103/PhysRevC.91.061301

    Article  ADS  Google Scholar 

  17. H. Polinder, J. Haidenbauer, U.G. Meissner, Nucl. Phys. A 779, 244 (2006). https://doi.org/10.1016/j.nuclphysa.2006.09.006

    Article  ADS  Google Scholar 

  18. G.P. Kamuntavicius, R.K. Kalinauskas, B.R. Barrett, S. Mickevicius, D. Germanas, Nucl. Phys. A 695, 191 (2001). https://doi.org/10.1016/S0375-9474(01)01101-0

    Article  ADS  Google Scholar 

  19. R.J. Furnstahl, G. Hagen, T. Papenbrock, Phys. Rev. C 86, 031301 (2012). https://doi.org/10.1103/PhysRevC.86.031301

    Article  ADS  Google Scholar 

  20. S.A. Coon, M.I. Avetian, M.K.G. Kruse, U. van Kolck, P. Maris, J.P. Vary, Phys. Rev. C 86, 054002 (2012). https://doi.org/10.1103/PhysRevC.86.054002

    Article  ADS  Google Scholar 

  21. C. Forssén, B.D. Carlsson, H.T. Johansson, D. Sääf, A. Bansal, G. Hagen, T. Papenbrock, Phys. Rev. C 97(3), 034328 (2018). https://doi.org/10.1103/PhysRevC.97.034328

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of T.Y. Htun was supported by the Royal Golden Jubilee Ph.D. Program jointly sponsored by Thailand International Development Cooperation Agency, International Science Programme (ISP) in Sweden, and Thailand Research Fund under Contract No. PHD/0068/2558. The work of D. Gazda was supported by the Czech Science Foundation GAČR grant No. 19-19640S and by the Knut and Alice Wallenberg Foundation (PI: Jan Conrad). The work of C. Forssén was supported by the Swedish Research Council (dnr. 2017-04234). Some of the computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at C3SE (Chalmers) and NSC (Linköping).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gazda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Htun, T.Y., Gazda, D., Forssén, C. et al. Systematic Nuclear Uncertainties in the Hypertriton System. Few-Body Syst 62, 94 (2021). https://doi.org/10.1007/s00601-021-01675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01675-4

Navigation