Abstract
Dirac equation with spatially or position-dependent mass and an attractive Coulomb-like field is constructed in Hausdorff dimension of order \(0<\alpha \le 1\). The lower and upper components of the spinor wave function were derived in addition to the corresponding energy eigenvalues of the resulting relativistic equation. It was observed that, in Hausdorff radial dimension, the ground state energy of particles mass with spin half is enhanced which leads to an enhancement of electrons mass in agreement with recent theoretical observations and experimental data.
Similar content being viewed by others
References
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure (Les Editions de Physique, Les Ulis, 1988)
D.L. Smith, C. Mailhiot, Theory of semiconductor superlattice electronic structure. Rev. Mod. Phys. 62, 173–234 (1990)
G.T. Einevoll, Operator ordering in effective mass theory for heterostructures II. Strained systems. Phys. Rev. B 42, 3497 (1990)
P. Harrison, Quantum Wells, Wires and Dots (Wiley, New York, 2000)
R.A. El-Nabulsi, Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics. Eur. Phys. J. Plus 134, 192 (2019)
R.A. El-Nabulsi, Time-fractional Schrodinger equation from path integral and its implications in quantum dots and semiconductors. Eur. Phys. J. Plus 133, 394 (2018)
R.A. El-Nabulsi, Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic Carrier concentrations. J. Phys. Chem. Solids 127, 224–230 (2019)
F. Arias de Saavedra, J. Boronat, A. Polls, A. Fabrocini, Effective mass of one \(^{4}\text{ He }\) atom in liquid \(^{3}\text{ He }\). Phys. Rev. B 50, 4248 (1994)
W. Klopper, C. Samson, G. Tarczay, A. Csaszar, Equilibrium inversion barrier of NH\(_{\rm 3}\) from extrapolated coupled-cluster pair energies. J. Comput. Chem. 22, 1306 (2001)
J. Gordon, H. Zeiger, C. Townes, Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH\(_{3}\). Phys. Rev. 95, 282 (1954)
J. Förster, A. Saenz, U. Wolff, Matrix algorithm for solving Schrödinger equations with position-dependent mass or complex optical potentials. Phys. Rev. E 86, 016701 (2012)
F.Q. Zhao, X.X. Liang, S.L. Ban, Influence of the spatially dependent effective mass on bound polarons in finite parabolic quantum wells. Eur. Phys. J. B 33, 3–8 (2003)
S. Meyur, S. Maji, S. Debnath, Analytical solution of the Schrödinger equation with spatially varying effective mass for generalized Hylleraas potential. Adv. High Energy Phys. 2014, Article ID 952597 (7 pages) (2014)
A.R. Plastino, A. Rigo, M. Casas, F. Garcias, A. Plastino, Supersymmetric approach to quantum systems with position-dependent effective mass. Phys. Rev. A 60, 4318 (1999)
B. Gonul, B. Gonul, D. Tutco, O. Ozer, Supersymmetric approach to exactly solvable systems with position-dependent effective mass. Mod. Phys. Lett. A 17, 2057 (2002)
S.-H. Dong, M. Lozada-Cassou, Exact solutions of the Schrödinger equation with the position-dependent mass for a hard-core potential. Phys. Lett. A 337, 313–320 (2005)
S.-H. Dong, J.J. Pena, C. Pacheco-Garcia, J. Garcia-Ravelo, Algebraic approach to the position-dependent mass Schrodinger equation for a singular oscillator. Mod. Phys. Lett. A 22, 1039 (2007)
G.H. Sun, D. Popov, O. Camacho-Nieto, S.H. Dong, Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well. Chin. Phys. B 24, 100303 (2015)
B.J. Falaye, F.A. Serrano, S.-H. Dong, Fisher information for the position-dependent mass Schrödinger system. Phys. Lett. A 380, 267–271 (2016)
J. Yu, S.-H. Dong, Exactly solvable potentials for the Schrodinger equation with spatially dependent mass. Phys. Lett. A 325, 194–198 (2004)
S.C. Cruz, O. Rosas-Ortiz, Position-dependent mass oscillators and coherent states. J. Phys. A Math. Theor. 42, 185205 (2009)
R.N. Costa-Filho, M.P. Almeida, G.A. Farias, J.S. Andrade Jr., Displacement operator for quantum systems with position-dependent mass. Phys. Rev. A 84, 050102 (2011)
J.J. Peña, J. Morales, J. Garcia-Ravelo, L. Arcos-Diaz, Schrödinger equation with position-dependent mass: staggered mass distributions. Int. J. Phys. Math. Sci. 11, 324–327 (2017)
X.-Y. Gu, S.-H. Dong, Z.-Q. Ma, Energy spectra for modified Rosen–Morse potential solved by the exact quantization rule. J. Phys. A Math. Theor. 42, 035303 (2008)
S.H. Dong, X.Y. Gu, Arbitrary \(l\) state solutions of the Schrödinger equation with the Deng–Fan molecular potential. J. Phys. Conf. Ser. 96, 012109 (2008)
S.H. Dong, G.H. Sun, D. Popov, Group theory approach to the Dirac equation with a Coulomb plus scalar potential in D\(+\)1 dimensions. J. Math. Phys. 44, 4467 (2003)
R. Renan, M.H. Pacheco, C.A.S. Almeida, Treating some solid problems with the Dirac equation. J. Phys. A Math. Theor. 33, L509 (2000)
O. von Roos, Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547 (1983)
M.K. Bahar, F. Yasuk, Bound states of the Dirac equation with position-dependent mass for the Eckart potential. Chin. Phys. B 22, 010301 (2013)
O. Panella, S. Biondini, A. Arda, New exact solution of the one dimensional Dirac Equation for the Woods–Saxon potential within the effective mass case. J. Phys. A Math. Theor. 43, 325302 (2010)
S. Alpdogan, A. Havare, Dirac particle for the position dependent mass in the generalized asymmetric Woods–Saxon potential. Adv. High Energy Phys. 2014, Article ID 973847, 10 pages (2014)
O. Aydogdu, A. Arda, R. Sever, Effective-mass Dirac equation for Woods–Saxon potential: scattering, bound states, and resonances. J. Math. Phys. 53, 042106 (2012)
O. Aydogdu, A. Arda, R. Sever, Scattering of a spinless particle by an asymmetric Hulthén potential within the effective mass formalism. J. Math. Phys. 53, 102111 (2012)
X.-L. Peng, J.-Y. Liu, C.-S. Jia, Approximation solution of the Dirac equation with position-dependent mass for the generalized Hulthén potential. Phys. Lett. A 352, 478–483 (2006)
A. Arda, R. Sever, C. Tezcan, Approximate analytical solutions of the effective mass Dirac equation for the generalized Hulthén potential with any \(\kappa \)-value. Cent. Eur. J. Phys. 8, 843–849 (2010)
B. Mandelbrot, Fractal Geometry of Nature (Henry Holt & Co., New York, 1982)
G. Calcagni, G. Nardelli, M. Scalisi, Quantum mechanics in fractional and other anomalous spacetimes. J. Math. Phys. 53, 102110–102125 (2012)
G. Losa, T. Nonnenmacher, Self-similarity and fractal irregularity in pathologic tissues. Mod. Pathol. 9, 174–182 (1996)
R.A. El-Nabulsi, Modifications at large distances from fractional and fractal arguments. Fractals 18, 1 (2010)
V.E. Tarasov, Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005)
M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Dover Publications, Mineola, 1991)
R.A. Blaya, J.B. Reyes, On boundary value problems for perturbed Hermitian matrix Dirac equations in a fractal domain. Bull. Belg. Math. Soc. Simon Stevin 21, 733–746 (2014)
R.A. Blaya, J.B. Reyes, F. Brackx, H. De Schepper, F. Sommen, A Hilbert transform for matrix functions on fractal domains. Complex Anal. Oper. Theor. 6, 359–372 (2012)
R.A. Blaya, J.B. Reyes, F. Brackx, H. De Schepper, F. Sommen, Boundary value problems associated to a Hermitian Helmholtz equation. J. Math. Anal. Appl. 389, 1268–1279 (2012)
I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)
K.S. Miller, An Introduction to Fractional Calculus and Fractional Differential Equation (Wiley, New York, 1993)
N. Laskin, Fractional Schrodinger equation. Phys. Rev. E 66, 056108 (2002)
N. Laskin, Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268, 298–305 (2000)
M.M.I. Nayga, J.P.H. Esguerra, Levy path integral approach to the fractional Schrödinger equation with delta-perturbed infinite square well. Int. J. Mod. Phys. Conf. Ser. 36, 1560015–1560020 (2015)
Y. Zhang, X. Liu, M.R. Belic, W. Zhong, Y. Zhang, M. Xiao, Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403–180407 (2015)
S. Longhi, Fractional Schrödinger equation in optics. Opt. Lett. 40, 1117–1120 (2015)
A. Liemert, A. Kienle, Fractional Schrödinger equation in the presence of the linear potential. Mathematics 4, 31–45 (2016)
Y. Luchko, Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 54, 012111 (2013)
R.A. El-Nabulsi, Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172, 1617–1640 (2018)
R.A. El-Nabulsi, On the fractional minimal length Heisenberg-Weyl uncertainty relation from fractional Riccati generalized momentum operator. Chaos Solitons Fract. 42, 84–88 (2009)
R.A. El-Nabulsi, Complexified quantum field theory and mass without mass from multidimensional fractional actionlike variational approach with time-dependent fractional exponent. Chaos Solitons Fract. 42, 2384–2398 (2009)
R.A. El-Nabulsi, Fractional quantum Euler–Cauchy equation in the Schrödinger picture, complexified harmonic oscillators and emergence of complexified Lagrangian and Hamiltonian dynamics. Mod. Phys. Lett. B 23, 3368 (2009)
R.A. El-Nabulsi, The fractional white dwarf hydrodynamical nonlinear differential equation and emergence of quark stars. Appl. Math. Comput. 218, 2837–2849 (2011)
R.A. El-Nabulsi, G.-C. Wu, Fractional complexified field theory from Saxena–Kumbhat fraction integral, fractional derivative of order Alfa Beta and dynamical fractional integral exponent. Afr. Diaspora J. Math. 13, 45–61 (2012)
R.A. El-Nabulsi, Gravitons in fractional action cosmology. Int. J. Theor. Phys. 51, 3978 (2012)
R.A. El-Nabulsi, Fractional derivatives generalization of Einstein’s field equations. Indian J. Phys. 87, 195–200 (2013)
O. Khan, N. Khan, Computable solution of fractional kinetic equations using Mathieu-type series. Adv. Differ. Equ. 2019, 234 (2019)
A. Antagana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fract. 102, 395–406 (2017)
F.B. Tatom, The relationship between fractional calculus and fractals. Fractals 03, 217 (1995)
S. Butera, M. Di Paola, A physically based connection between fractional calculus and fractal geometry. Ann. Phys. 350, 146–158 (2014)
A. Rocco, B.J. West, Fractional calculus and the evolution of fractal phenomena. Phys. A 265, 535–546 (1999)
A.K. Golmankhaneh, D. Baleanu, Fractal calculus involving Gauge function. Commun. Nonlinear Sci. 37, 125–130 (2016)
A.K. Golmankhaneh, D. Baleanu, Non-local integrals and derivatives on fractal sets with applications. Open Phys. 14, 542–548 (2016)
A.K. Golmankhaneh, C. Tunc, On the Lipschitz condition in the fractal calculus. Chaos Solitons Fract. 95, 140–147 (2017)
M. Zubair, M.J. Mughal, Q.A. Naqvi, On electromagnetic wave propagation in fractional space. Nonlinear Anal Real World Appl. 12, 2844–2850 (2011)
F.H. Stillinger, Axiomatic basis for spaces with noninteger dimension. J. Math. Phys. 18, 1224–1234 (1977)
M. Zubair, M.J. Mughal, Q.A. Naqvi, An exact solution of spherical wave in D-dimensional fractional space. J. Electromagn. Waves Appl. 25, 1481–1491 (2011)
M. Zubair, M.J. Mughal, Q.A. Naqvi, Electromagnetic wave propagation in fractional space, Electromagnetic Fields and Waves in Fractional Dimensional Space, ed. by M. Zubair, M.J. Mughal, Q.A. Naqvi, Springer Briefs in Applied Sciences and Technology (Springer, Berlin, 2012)
Q.A. Naqvi, M. Zubair, On cylindrical model of electrostatic potential in fractional dimensional space. Optik Int. J. Light Electron Opt. 127, 3243–3247 (2016)
M. Zubair, M.J. Mughal, Q.A. Naqvi, The wave equation and general plane wave solutions in fractional space. Prog. Electromagn. Res. Lett. 19, 137–146 (2010)
M. Zubair, Y.S. Ang, L.K. Ang, Thickness dependence of space-charge-limited current in spatially disordered organic semiconductors. IEEE Trans. Electron Dev. 65(8), 3421–3429 (2018)
M. Zubair, Y.S. Ang, L.K. Ang, Fractional Fowler–Nordheim law for field emission from rough surface with nonparabolic energy dispersion. IEEE Trans. Electron Dev. 65(6), 2089–2095 (2018)
M. Zubair, L.K. Ang, Fractional dimensional Child–Langmuir law for a rough cathode. Phys. Plasmas 23(7), 072118 (2016)
P. Strange, Relativistic Quantum Mechanics: With Applications in Condensed Matter and Atomic Physics (Cambridge University Press, Cambridge, 1998)
W. Greiner, Relativistic Quantum Mechanics: Wave Equations, 2nd edn. (Springer, Berlin, 1997)
R. Schafer, An Introduction to Nonassociative Algebras (Academic Press, New York, 1966)
J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw Hill, New York, 1965)
A.D. Alhaidari, H. Bahlouli, A. Al-Hasan, Dirac and Klein–Gordon equations with equal scalar and vector potentials. Phys. Lett. A 349, 87–97 (2006)
E. Blomquist, T. Boman, The Dirac equation for a particle in a spherical box potential with application in bag modeling, SA104X Degree Project in Engineering Physics, First Level Department of Theoretical Physics Royal Institute of Technology (KTH), 2015
M. Eshghi, S.M. Ikhdair, Exact solutions of a spatially-dependent mass Dirac equation for Coulomb field plus tensor interaction via Laplace transformation method. Adv. High Energy Phys. 2012, Article ID 873619 (2012)
S.M. Ikhdair, R. Sever, Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential. Appl. Math. Comput. 216, 545–555 (2010)
M.K. Bahar, F. Yasuk, Exact solutions of the mass-dependent Klein–Gordon equation with the vector quark-antiquark interaction and harmonic oscillator potential. Adv. High Energy Phys. 2013, Article ID 814985 (2013)
S.M. Ikhdair, Exact Klein–Gordon equation with spatially dependent masses for unequal scalar–vector Coulomb-like potentials. Eur. Phys. J. A 40, 143–149 (2009)
S. Pezzini, M.R. van Delft, L. Schoop, B. Lotsch, A. Carrington, M.I. Katsnelson, N.E. Hussey, S. Wiedmann, Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. Nat. Phys. 14, 178–183 (2018)
J. Peng, X.M. Gu, G.T. Zhou, W. Wang, J.Y. Liu, T. Wang, Z.Q. Mao, X.S. Wu, S. Dong, Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates. Front. Phys. 13, 137108 (2018)
T. Matsuura, T. Hotta, Relation between electron mass enhancement and potential shape: numerical analysis of two-site anharmonic Holstein–Hubbard model. J. Phys. Conf. Ser. 592, 012144 (2015)
P.L. Hagelstein, Electron mass enhancement and the Widom–Larsen model. J. Condens. Matter Nucl. Sci. 12, 18–40 (2013)
T. Watanabe, J.B. Murphy, J. Rose, Y. Shen, T. Tsang, X.J. Wang, H.P. Freund, The first experimental observation of FEL amplifier efficient improvement using electron beam energy detuning at the NSLS SDL, in Proceedings of FEL (BESSY, Berlin, Germany, 2006), pp. 190–196
Y.M. Zhu, D.W. Zhang, Y.C. Yang, S.L. Zhuang, K. Hirakawa, The effective mass of electron enhancement in \(\Gamma \)-Valley in bulk GaAs under very high electric field investigated by time-domain terahertz spectroscopy, in Proceedings of SPIE 7277, Photonics and Optoelectronics Meeting (POEM) 2008: Terahertz Science and Technology, 727220H, 16 February 2009, https://doi.org/10.1117/12.821094
W. Wunderlich, H. Ohta, K. Koumoto, Enhanced effective mass in doped SrTiO\(_{\rm 3}\) and related perovskites. Phys. B Condens. Matter 404, 2202–2212 (2009)
V. Todorinov, P. Bosso, S. Das, Relativistic generalized uncertainty principle. Ann. Phys. 405, 92–100 (2019)
A. Shokrollahi, Free motion of a Dirac particle with a minimum uncertainty in position. Rep. Math. Phys. 70, 1–13 (2012)
R.A. El-Nabulsi, Some implications of three generalized uncertainty relations in statistical mechanics of an ideal gas. Eur. Phys. J. P135, 34 (2020)
Acknowledgements
The author expresses his gratitude for the group of anonymous referees for their useful comments and valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
El-Nabulsi, R.A. Dirac Equation with Position-Dependent Mass and Coulomb-like Field in Hausdorff Dimension. Few-Body Syst 61, 10 (2020). https://doi.org/10.1007/s00601-020-1544-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00601-020-1544-6