Skip to main content
Log in

Properties of the Positronium Negative Ion Embedded in Non-ideal Classical Plasmas

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Properties of the positronium negative ion embedded in non-ideal classical plasmas have been studied theoretically. A pseudopotential, derived from a solution of Bogolyubov’s hierarchy equations, is used to describe the interaction potentials of the charged particles in the ion. A large basis set is employed in Rayleigh–Ritz variational method to compute accurately various quantities, such as binding energy, cusp values, annihilation rate, associated with the ground state of the ion. A detailed study is made on the effects of non-ideality of plasma on those quantities. In particular, special emphasis is given to determine the ranges of plasma screening parameters within which the ion remains stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J.A. Wheeler, Ann. N. Y. Acad. Sci. 48, 219 (1946)

    ADS  Google Scholar 

  2. A.P. Mills Jr., Phys. Rev. Lett. 46, 717 (1981)

    ADS  Google Scholar 

  3. S. Kar, Y.K. Ho, Excitons (INTEX, 2019), chapter 5. https://doi.org/10.5772/intechopen.70474

  4. E.A. Hylleraas, Phys. Rev. 71, 491 (1946)

    ADS  Google Scholar 

  5. Y.K. Ho, Phys. Rev. A 48, 4780 (1993)

    ADS  Google Scholar 

  6. A. Bhatia, R.J. Drachman, Nucl. Instrum. Methods Phys. Res. B 143, 195 (1998)

    ADS  Google Scholar 

  7. A.M. Frolov, Phys. Rev. A 60, 2834 (1999)

    ADS  Google Scholar 

  8. G.W.F. Drake, M.M. Cassar, R.A. Nistor, Phys. Rev. A 65, 054501 (2002)

    ADS  Google Scholar 

  9. G.W.F. Drake, M. Grigorescu, J. Phys. B 38, 3377 (2005)

    ADS  Google Scholar 

  10. M. Barham, J.W. Darewych, J. Phys. B 41, 185001 (2008)

    ADS  Google Scholar 

  11. D.P. Chong, Mol. Phys. 13, 577 (1967)

    ADS  Google Scholar 

  12. D.P. Chong, D.M. Schrader, Mol. Phys. 16, 137 (1969)

    ADS  Google Scholar 

  13. A.M. Frolov, Phys. Lett. A 342, 430 (2005)

    ADS  Google Scholar 

  14. A.M. Frolov, Chem. Phys. Lett. 626, 49 (2015)

    ADS  MathSciNet  Google Scholar 

  15. M. Puchalski, A. Czarnecki, S.G. Karshenboim, Phys. Rev. Lett. 99, 203401 (2007)

    ADS  Google Scholar 

  16. Y.K. Ho, J. Phys. B 16, 1503 (1983)

    ADS  Google Scholar 

  17. J. Usukura, Y. Suzuki, Phys. Rev. A 66, 010502 (2002)

    ADS  Google Scholar 

  18. Y. Ho, Resonances in positronium negative ions, in Proceedings for TemkinDrachman Retirement Symposium, (NASA/CP-2006-214146), ed. by A.K. Bhatia (Goddard Space Flight Center, Greenbelt, 2006), p. 111

    Google Scholar 

  19. Y.K. Ho, Nucl. Instrum. Methods Phys. Res. B 266, 516 (2008)

    ADS  Google Scholar 

  20. S. Kar, Y.K. Ho, Eur. Phys. J. D 57, 13 (2010)

    ADS  Google Scholar 

  21. S. Kar, Y.K. Ho, Comput. Phys. Commun. 182, 119 (2011)

    ADS  Google Scholar 

  22. S. Kar, Y.K. Ho, Eur. Phys. J. D 72, 193 (2018)

    ADS  Google Scholar 

  23. S. Kar, Y.K. Ho, Atoms 8, 1 (2020)

    Google Scholar 

  24. A.K. Bhatia, R.J. Drachman, Phys. Rev. A 32, 3745 (1985)

    ADS  Google Scholar 

  25. S.J. Ward, J.W. Humberston, M.R.C. McDowell, J. Phys. B 20, 127 (1987)

    ADS  Google Scholar 

  26. K. Maniadaki, L.A.A. Nikolopoulos, P. Lambropoulos, Eur. Phys. J. D 20, 205 (2002)

    ADS  Google Scholar 

  27. A. Igarashi, J. Phys. B: At. Mol. Opt. Phys. 45, 245201 (2012)

    ADS  Google Scholar 

  28. A.K. Bhatia, Atoms 7, 2 (2019)

    ADS  Google Scholar 

  29. A.K. Bhatia, R.J. Drachman, Phys. Rev. A 75, 062510 (2007)

    ADS  Google Scholar 

  30. S. Kar, H.W. Li, P. Jiang, Phys. Plasmas 20, 083302 (2013)

    ADS  Google Scholar 

  31. S. Kar, Y.-S. Wang, Y. Wang, Y.K. Ho, Polarizability of negatively charged helium-like ions interacting with Coulomb and Screened Coulomb potentials. Int. J. Quantum Chem. (2017). https://doi.org/10.1002/qua.25515

    Article  Google Scholar 

  32. A.P. Mills Jr., Phys. Rev. Lett. 50, 671 (1983)

    ADS  Google Scholar 

  33. A.P. Mills Jr., P.G. Friedman, D.M. Zuckerman, Annihilation in gases and galaxies, in NASA Conference Publication 3058, p. 213 (1989)

  34. D. Schwalm, F. Fleischer, M. Lestingky, K. Degreif, G. Gwinner, V. Liechtenstein, F. Plenge, H. Scheit, Nucl. Instrum. Methods Phys. Res. B 221, 185 (2004)

    ADS  Google Scholar 

  35. F. Fleischer, K. Degreif, G. Gwinner, M. Lestinsky, V. Liechtenstein, F. Plenge, D. Schwalm, Phys. Rev. Lett. 96, 063401 (2006)

    ADS  Google Scholar 

  36. Y. Nagashima, T. Sakai, New J. Phys. 8, 319 (2006)

    ADS  Google Scholar 

  37. F. Fleischer, Lect. Notes Phys. 745, 261 (2008)

    ADS  Google Scholar 

  38. K. Michishio, T. Tachibana, H. Terabe, A. Igarashi, K. Wada, T. Kuga, A. Yagishita, T. Hyodo, Y. Nagashima, Phys. Rev. Lett. 106, 153401 (2011)

    ADS  Google Scholar 

  39. H. Ceeh, C. Hugenschmidt, K. Schreckenbach, S.A. Grtner, P.G. Thirolf, F. Fleischer, D. Schwalm, Phys. Rev. A 84, 062508 (2011)

    ADS  Google Scholar 

  40. K. Michishio, T. Kanai, S. Kuma, T. Azuma, K. Wada, I. Mochizuki, T. Hyodo, A. Yagishita, Y. Nagashima, Nat. Commun. 7, 11060 (2016)

    ADS  Google Scholar 

  41. Y. Nagashima, Phys. Rep. 95, 545 (2014)

    Google Scholar 

  42. Y. Nagashima, Positronium negative ions: the simplest three body state composed of a positron and two electrons, recent progress in few-body physics, in Proceedings of the 22nd International Conference on Few-Body Problems in Physics. Springer Proceedings in Physics, vol. 238, ed. by N. Orr, M. Ploszajczak, F. Marqus, J. Carbonell (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-32357-8_1

    Chapter  Google Scholar 

  43. H. Nguyen, M. Koenig, D. Benredjem, M. Caby, G. Coulaud, Phys. Rev. A 33, 1279 (1986)

    ADS  Google Scholar 

  44. D.K. Bradley, J. Kilkenny, S.J. Rose, J.D. Hares, Phys. Rev. Lett. 59, 2995 (1987)

    ADS  Google Scholar 

  45. J.K. Saha, T.K. Mukherjee, P.K. Mukherjee, B. Fricke, Eur. Phys. J. D 66, 43 (2012)

    ADS  Google Scholar 

  46. H.R. Griem, Plasma Spectroscopy (Mc-Graw Hill, New York, 1964)

    Google Scholar 

  47. H.M. Van Horn, Science 252, 384 (1991)

    ADS  Google Scholar 

  48. T. Guillot, Planet. Space Sci. 47, 1183 (1999)

    ADS  Google Scholar 

  49. C. Hollenstein, Plasma Phys. Control. Fusion 42, R93 (2000)

    ADS  Google Scholar 

  50. T.C. Killan, T. Pattard, T. Pohl, J.M. Rost, Phys. Rep. 77, 449 (2007)

    Google Scholar 

  51. V.E. Fortov, I.T. Iakubov, The Physics of Non-ideal Plasma (World Scientific, Singapore, 2000)

    MATH  Google Scholar 

  52. R.K. Janev, S. Zhang, J. Wang, Matter Radiat. Extremes 1, 237 (2016)

    Google Scholar 

  53. F.B. Baimbetov, KhT Nurekenov, T.S. Ramazanov, Phys. Lett. A 202, 211 (1995)

    ADS  Google Scholar 

  54. F.B. Baimbetov, Kh.T. Nurekenov, T.S. Ramazanov, Physica A 226, 181 (1996)

  55. W. Ebeling, Contrib. Plasma Phys. 56, 163 (2016)

    ADS  Google Scholar 

  56. Kh.T. Nurekenov, F.B. Baimbetov, R. Redmer, G. Ropke, Contrib. Plasma Phys. 37, 473 (1997)

  57. Y.D. Jung, Eur. Phys. J. D 12, 351 (2000)

    ADS  Google Scholar 

  58. Y.D. Jung, J. Plasma Phys. 67, 175 (2002)

    ADS  Google Scholar 

  59. Y.D. Jung, Eur. Phys. J. D 11, 291 (2000)

    ADS  Google Scholar 

  60. V.B. Mintsev, V.E. Fortov, V.K. Gryaznov, Zh. Eksp, Teor. Fiz. 79, 116 (1980)

  61. H.E. Wilhelm, I.E.E.E. Trans, Plasma Sci. PS–9, 68 (1981)

    Google Scholar 

  62. A. Karmakar, A. Ghoshal, Phys. Plasmas 26, 123504 (2019)

    ADS  Google Scholar 

  63. B. Das, A. Karmakar, A. Ghoshal, Phys. Plasmas 26, 083507 (2019)

    ADS  Google Scholar 

  64. B. Das, A. Ghoshal, Phys. Rev. E 101, 043202 (2020)

    ADS  Google Scholar 

  65. T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, Phys. Rev. E 92, 023104 (2015)

  66. T.S. Ramazanov, K.N. Dzhumagulova, A.Zh. Akbarov, J. Phys. A: Math. Gen. 39, 4335 (2006)

  67. T.S. Ramazanov, K.N. Dzhumagulova, Yu.A. Omarbakiyeva, G. Ropke, J. Phys. A: Math. Gen. 39, 4369 (2006)

  68. Yu.A. Omarbakiyeva, T.S. Ramazanov, G. Ropke, J. Phys. A: Math. Theor. 42, 214045 (2009)

  69. F.B. Baimbetov, M.A. Bekenov, T.S. Ramazanov, Phys. Lett. A 197, 157 (1995)

    ADS  Google Scholar 

  70. E.L. Chupp, D.J. Forrest, P.R. Higbie, A.N. Suri, C. Tsai, P.P. Dunphy, Nature (London) 241, 333 (1973)

    ADS  Google Scholar 

  71. M. Leventhal, C.J. MacCallum, S.D. Barthelmy, N. Gehrelst, B.J. Teegarden, J. Tueller, Nature (London) 339, 36 (1989)

    ADS  Google Scholar 

  72. G. Weidenspointner, G. Skinner, P. Jean, J. Knodlseder, P. von Ballmoos, G. Bignami, R. Diehl, A.W. Strong, B. Cordier, S. Schanne, C. Winkler, Nature (London) 451, 159 (2008)

    ADS  Google Scholar 

  73. B. Saha, T.K. Mukherjee, P.K. Mukherjee, Chem. Phys. Lett. 373, 218 (2003)

    ADS  Google Scholar 

  74. S. Kar, Y.K. Ho, Phys. Rev. A 71, 052503 (2005)

    ADS  Google Scholar 

  75. S. Kar, Y.K. Ho, Chem. Phys. Lett. 424, 403 (2006)

    ADS  Google Scholar 

  76. S. Kar, Y.K. Ho, Phys. Lett. A 372, 4253–4256 (2008)

    ADS  Google Scholar 

  77. A. Ghoshal, Y.K. Ho, Few Body Syst. 46, 249 (2009)

    ADS  Google Scholar 

  78. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd edn. (Cambridge University Press, London, 1997), p. 476

    MATH  Google Scholar 

Download references

Acknowledgements

The work has been supported by the Science and Engineering Research Board, India through the Research Project (FILE NO. EMR/2017/004985). Authors sincerely acknowledge the support received from DST PURSE Phase 2 (No. SR/PURSE Phase 2/34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Ghoshal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Ghoshal, A. Properties of the Positronium Negative Ion Embedded in Non-ideal Classical Plasmas. Few-Body Syst 61, 22 (2020). https://doi.org/10.1007/s00601-020-01556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01556-2

Navigation