Skip to main content
Log in

Interaction and Identification of the Di-Hadronic Molecules

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this article, we study the interesting problem of identification and interaction of the hadronic molecules. The One Boson Exchange potential along with Yukawa screen like potential in their relative s-wave state is used for the calculation of the mass spectra. Along with interaction potential, we propose the two color neutral hadrons pursue the dipole-like interaction for formation of the hadronic molecule. For the identification, we use the Weinberg’s compositeness theorem to distinguish hadronic molecules from other hadronic states. With the present interaction potential, we have calculated the mass spectra of di-mesonic states, namely, \(K\overline{K}\), \(\rho \overline{\rho }\), \(K^{*}\overline{K^{*}}\), \(D\overline{D^{*}}\)(\(\overline{D}D^{*}\)), \(D^{*}\overline{D^{*}}\), \(B\overline{B^{*}}\), \(B^{*}\overline{B^{*}}\), \(D^{*\pm }\overline{D_{1}^{0}}\), \( D^{0}\overline{K^{\pm }}\), \(D^{*0}\overline{K^{\pm }}\), with their possible quantum number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S.K. Choi et al., Phys. Rev. Lett. 91, 262001 (2003). https://doi.org/10.1103/PhysRevLett.91.262001

    Article  ADS  Google Scholar 

  2. S.K. Choi et al., Phys. Rev. Lett. 100, 142001 (2008). https://doi.org/10.1103/PhysRevLett.100.142001

    Article  ADS  Google Scholar 

  3. T.E. Coan et al., Phys. Rev. Lett. 96, 162003 (2006). https://doi.org/10.1103/PhysRevLett.96.162003

    Article  ADS  Google Scholar 

  4. K.F. Chen et al., Phys. Rev. Lett. 100, 112001 (2008). https://doi.org/10.1103/PhysRevLett.100.112001

    Article  ADS  Google Scholar 

  5. R. Aaij et al., Phys. Rev. Lett. 115, 072001 (2015). https://doi.org/10.1103/PhysRevLett.115.072001

    Article  ADS  Google Scholar 

  6. F.K. Guo et al., Rev. Mod. Phys. 90, 015004 (2018). https://doi.org/10.1103/RevModPhys.90.015004

    Article  ADS  Google Scholar 

  7. L.S. Geng, E. Oset, Phys. Rev. D 79, 074009 (2009). https://doi.org/10.1103/PhysRevD.79.074009

    Article  ADS  Google Scholar 

  8. A.M. Torres et al., Phys. Lett. B 719(4), 388 (2013). https://doi.org/10.1016/j.physletb.2013.01.036

    Article  ADS  Google Scholar 

  9. R. Molina, D. Nicmorus, E. Oset, Phys. Rev. D 78, 114018 (2008). https://doi.org/10.1103/PhysRevD.78.114018

    Article  ADS  Google Scholar 

  10. C. García-Recio et al., Phys. Rev. D 87, 096006 (2013). https://doi.org/10.1103/PhysRevD.87.096006

    Article  ADS  Google Scholar 

  11. T.H. Wang, G.L. Wang, Phys. Lett. B 697, 233 (2011). https://doi.org/10.1016/j.physletb.2011.02.014

    Article  ADS  Google Scholar 

  12. F. De Fazio, Phys. Rev. D 79, 054015 (2009). https://doi.org/10.1103/PhysRevD.79.054015

    Article  ADS  Google Scholar 

  13. J. Ferretti, G. Galatà, E. Santopinto, Phys. Rev. D 90, 054010 (2014). https://doi.org/10.1103/PhysRevD.90.054010

    Article  ADS  Google Scholar 

  14. Y.S. Kalashnikova, A.V. Nefediev, Phys. Rev. D 82, 097502 (2010). https://doi.org/10.1103/PhysRevD.82.097502

    Article  ADS  Google Scholar 

  15. A. Ali, J.S. Lange, S. Stone, Prog. Part. Nucl. Phys. 97, 123 (2017). https://doi.org/10.1016/j.ppnp.2017.08.003

    Article  ADS  Google Scholar 

  16. A. Esposito, A. Pilloni, A. Polosa, Phys. Rep. 668, 1 (2017). https://doi.org/10.1016/j.physrep.2016.11.002

    Article  ADS  MathSciNet  Google Scholar 

  17. Z.G. Wang, T. Huang, Phys. Rev. D 89, 054019 (2014). https://doi.org/10.1103/PhysRevD.89.054019

    Article  ADS  Google Scholar 

  18. Z.G. Wang, Eur. Phys. J. C 76(2), 70 (2016). https://doi.org/10.1140/epjc/s10052-016-3920-4

    Article  ADS  Google Scholar 

  19. F.K. Guo et al., Phys. Rev. D 92, 071502 (2015). https://doi.org/10.1103/PhysRevD.92.071502

    Article  ADS  Google Scholar 

  20. C. Hidalgo-Duque, J. Nieves, M.P. Valderrama, Phys. Rev. D 87(7), 076006 (2013). https://doi.org/10.1103/PhysRevD.87.076006

    Article  ADS  Google Scholar 

  21. S. Fleming et al., Phys. Rev. D 76, 034006 (2007). https://doi.org/10.1103/PhysRevD.76.034006

    Article  ADS  Google Scholar 

  22. F.K. Guo et al., Eur. Phys. J. C 74, 2885 (2014). https://doi.org/10.1140/epjc/s10052-014-2885-4

    Article  ADS  Google Scholar 

  23. M. Albaladejo et al., Eur. Phys. J. C 75, 547 (2015). https://doi.org/10.1140/epjc/s10052-015-3753-6

    Article  ADS  Google Scholar 

  24. J.R. Zhang, G.F. Chen, Phys. Rev. D 86(11), 116006 (2012). https://doi.org/10.1103/PhysRevD.86.116006. arXiv:1203.0700

  25. K. Azizi, Y. Sarac, H. Sundu, Phys. Rev. D 95, 094016 (2017). https://doi.org/10.1103/PhysRevD.95.094016

    Article  ADS  Google Scholar 

  26. K. Azizi, Y. Sarac, H. Sundu, Phys. Rev. D 96, 094030 (2017). https://doi.org/10.1103/PhysRevD.96.094030

    Article  ADS  Google Scholar 

  27. M. Alford, R.L. Jaffe, Nucl. Phys. B 578(1–2), 367 (2000). https://doi.org/10.1016/S0550-3213(00)00155-3. arXiv:hep-lat/0001023

    Article  ADS  Google Scholar 

  28. G.Z. Meng et al., Phys. Rev. D 80, 034503 (2009). https://doi.org/10.1103/PhysRevD.80.034503

    Article  ADS  Google Scholar 

  29. L. Liu et al., Phys. Rev. D 87, 014508 (2013). https://doi.org/10.1103/PhysRevD.87.014508

    Article  ADS  Google Scholar 

  30. G.S. Bali et al., Phys. Rev. D 96, 074501 (2017). https://doi.org/10.1103/PhysRevD.96.074501

    Article  ADS  Google Scholar 

  31. T. Branz, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. D 78(11), 114004 (2008). https://doi.org/10.1103/PhysRevD.78.114004

    Article  ADS  Google Scholar 

  32. J. Weinstein, N. Isgur, Phys. Rev. D 27, 588 (1983). https://doi.org/10.1103/PhysRevD.27.588

    Article  ADS  Google Scholar 

  33. J. Weinstein, N. Isgur, Phys. Rev. D 41, 2236 (1990). https://doi.org/10.1103/PhysRevD.41.2236

    Article  ADS  Google Scholar 

  34. J. Weinstein, Phys. Rev. D 47, 911 (1993). https://doi.org/10.1103/PhysRevD.47.911

    Article  ADS  Google Scholar 

  35. C.E. Thomas, F.E. Close, Phys. Rev. D 78, 034007 (2008). https://doi.org/10.1103/PhysRevD.78.034007

    Article  ADS  Google Scholar 

  36. C. Hanhart et al., Phys. Rev. D 75(7), 074015 (2007). https://doi.org/10.1103/PhysRevD.75.074015

    Article  ADS  Google Scholar 

  37. R. Zhang et al., Phys. Rev. D 65, 096005 (2002). https://doi.org/10.1103/PhysRevD.65.096005

    Article  ADS  Google Scholar 

  38. G.J. Ding, J.F. Liu, M.L. Yan, Phys. Rev. D 79, 054005 (2009). https://doi.org/10.1103/PhysRevD.79.054005

    Article  ADS  Google Scholar 

  39. M. Iwasaki, F. Takagi, Phys. Rev. D 77(5), 054020 (2008). https://doi.org/10.1103/PhysRevD.77.054020

    Article  ADS  Google Scholar 

  40. A.K. Rai, D.P. Rathaud, Eur. Phys. J. C 75(9), 462 (2015). https://doi.org/10.1140/epjc/s10052-015-3695-z

    Article  ADS  Google Scholar 

  41. A. Ali, J.S. Lange, S. Stone, Prog. Part. Nucl. Phys. 97(Supplement C), 123 (2017). https://doi.org/10.1016/j.ppnp.2017.08.003

    Article  ADS  Google Scholar 

  42. E.S. Swanson, Phys. Rep. 429(5), 243 (2006). https://doi.org/10.1016/j.physrep.2006.04.003

    Article  ADS  Google Scholar 

  43. E. Klempt, A. Zaitsev, Phys. Rep. 454(1), 1 (2007). https://doi.org/10.1016/j.physrep.2007.07.006

    Article  ADS  Google Scholar 

  44. S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90, 015003 (2018). https://doi.org/10.1103/RevModPhys.90.015003

    Article  ADS  Google Scholar 

  45. Y.R. Liu et al., (2019). arxiv:1903.11976

  46. N.A. Törnqvist, Phys. Rev. Lett. 67, 556 (1991). https://doi.org/10.1103/PhysRevLett.67.556

    Article  ADS  Google Scholar 

  47. T. Ericson, G. Karl, Phys. Lett. B 309(3–4), 426 (1993). https://doi.org/10.1016/0370-2693(93)90957-J

    Article  ADS  Google Scholar 

  48. N.A. Törnqvist, Zeitschrift für Physik C Particles and Fields 61, 525 (1994). https://doi.org/10.1007/BF01413192

    Article  ADS  Google Scholar 

  49. T. Barnes, E.S. Swanson, Phys. Rev. D 46, 131 (1992). https://doi.org/10.1103/PhysRevD.46.131

    Article  ADS  Google Scholar 

  50. G. Yang, J. Ping, F. Wang, Phys. Rev. D 95, 014010 (2017). https://doi.org/10.1103/PhysRevD.95.014010

    Article  ADS  Google Scholar 

  51. R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149(1), 1 (1987). https://doi.org/10.1016/S0370-1573(87)80002-9

    Article  ADS  Google Scholar 

  52. R. Machleidt, Phys. Rev. C 63, 024001 (2001). https://doi.org/10.1103/PhysRevC.63.024001

    Article  ADS  Google Scholar 

  53. M. Naghdi, Phys. Part. Nuclei 45(5), 924 (2014). https://doi.org/10.1134/S1063779614050050

    Article  ADS  Google Scholar 

  54. M.W. Paris, V.R. Pandharipande, Phys. Rev. C 62, 015201 (2000). https://doi.org/10.1103/PhysRevC.62.015201

    Article  ADS  Google Scholar 

  55. S. Weinberg, Phys. Rev. 137, B672 (1965). https://doi.org/10.1103/PhysRev.137.B672

    Article  ADS  Google Scholar 

  56. M.T. Vaughn, R. Aaron, R.D. Amado, Phys. Rev. 124(4), 1258 (1961). https://doi.org/10.1103/PhysRev.124.1258

    Article  ADS  Google Scholar 

  57. E. Acharya, Nuovo Cim. 24(5), 870 (1962). https://doi.org/10.1007/BF02751461

    Article  ADS  Google Scholar 

  58. V. Baru et al., Phys. Lett. B 586(1), 53 (2004). https://doi.org/10.1016/j.physletb.2004.01.088

    Article  ADS  Google Scholar 

  59. X.-W. Kang, J.A. Oller, Eur. Phys. J. C 77(6), 399 (2017). https://doi.org/10.1140/epjc/s10052-017-4961-z

    Article  ADS  Google Scholar 

  60. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 79, 114029 (2009). https://doi.org/10.1103/PhysRevD.79.114029

    Article  ADS  Google Scholar 

  61. A.M. Badalian, A.I. Veselov, B.L.G. Bakker, Phys. Rev. D 70, 016007 (2004). https://doi.org/10.1103/PhysRevD.70.016007

    Article  ADS  Google Scholar 

  62. C. Patrignani et al., Chin. Phys. C 40(10), 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

    Article  ADS  Google Scholar 

  63. E. Braaten, M. Kusunoki, Phys. Rev. D 69, 074005 (2004). https://doi.org/10.1103/PhysRevD.69.074005

    Article  ADS  Google Scholar 

  64. S. Weinberg, Phys. Rev. 137(3B), B672 (1965). https://doi.org/10.1103/PhysRev.137.B672

    Article  ADS  Google Scholar 

  65. M. Tanabashi et al., Phys. Rev. D 98(10), 030001 (2018)

    Article  ADS  Google Scholar 

  66. K. Chilikin et al., Phys. Rev. D 88, 074026 (2013). https://doi.org/10.1103/PhysRevD.88.074026

    Article  ADS  Google Scholar 

  67. L. Maiani et al., Phys. Rev. D 89, 114010 (2014). https://doi.org/10.1103/PhysRevD.89.114010

    Article  ADS  Google Scholar 

  68. D. Mohler et al., Phys. Rev. Lett. 111, 222001 (2013). https://doi.org/10.1103/PhysRevLett.111.222001

    Article  ADS  Google Scholar 

  69. D. Mohler, S. Prelovsek, R.M. Woloshyn, Phys. Rev. D 87, 034501 (2013). https://doi.org/10.1103/PhysRevD.87.034501

    Article  ADS  Google Scholar 

  70. M. Lüscher, Commun. Math. Phys. 105(2), 153 (1986)

    Article  ADS  Google Scholar 

  71. M. Lüscher, Nucl. Phys. B 354(2), 531 (1991). https://doi.org/10.1016/0550-3213(91)90366-6

    Article  ADS  Google Scholar 

  72. A. Martínez Torres et al., Phys. Rev. D 85, 014027 (2012). https://doi.org/10.1103/PhysRevD.85.014027

    Article  ADS  Google Scholar 

  73. S. Ozaki, S. Sasaki, Phys. Rev. D 87, 014506 (2013). https://doi.org/10.1103/PhysRevD.87.014506

    Article  ADS  Google Scholar 

  74. M. Albaladejo et al., Phys. Rev. D 88, 014510 (2013). https://doi.org/10.1103/PhysRevD.88.014510

    Article  ADS  Google Scholar 

  75. D. Agadjanov et al., J. High Energy Phys. 2015(1), 118 (2015). https://doi.org/10.1007/JHEP01(2015)118

    Article  MathSciNet  Google Scholar 

  76. D.P. Rathaud, A.K. Rai, Eur. Phys. J. Plus 132(8), 370 (2017). https://doi.org/10.1140/epjp/i2017-11641-3

    Article  Google Scholar 

Download references

Acknowledgements

D. P. Rathaud would like to thanks Prof. C. Hanhart for his useful suggestions and discussion on this study. A. K. Rai acknowledge the financial support extended by D.S.T., Government of India under SERB fast track scheme SR/FTP /PS-152/2012

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Rathaud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathaud, D.P., Rai, A.K. Interaction and Identification of the Di-Hadronic Molecules. Few-Body Syst 60, 37 (2019). https://doi.org/10.1007/s00601-019-1507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1507-y

Navigation