Skip to main content

Advertisement

Log in

Weakly Bound LiHe\(_2\) Molecules in the Framework of Three-Dimensional Faddeev Equations

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A method of direct solution of the Faddeev equations for the bound-state problem with zero total angular momentum is used to calculate the binding energies. The results for binding energies of He\(_2{}^6\)Li and He\(_2{}^7\)Li systems and helium atom–HeLi dimer scattering length are presented. The results show that modern potential models support two bound states in both trimers. In both cases the energy of the excited state is very close to the energy of the lowest two-body threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Efimov, Phys. Lett. B 33, 563 (1970)

    Article  ADS  Google Scholar 

  2. V. Efimov, Yad. Phys. 12, 1080 (1970) [Sov. J. Nucl. Phys. 12, 589 (1970)]

  3. H. Bethe, R. Peierls, Proc. R. Soc. Lond. 148, 146 (1935)

    Article  ADS  Google Scholar 

  4. L. Delves, Nucl. Phys. 9, 391 (1958)

    Article  Google Scholar 

  5. G.S. Danilov, JETP 40, 498 (1961) [Sov. Phys. JETP 41, 1850 (1961)]

  6. L.H. Thomas, Phys. Rev. 47, 903 (1935)

    Article  ADS  Google Scholar 

  7. E.A. Kolganova, A.K. Motovilov, W. Sandhas, Few-Body Syst. 51, 249 (2011)

    Article  ADS  Google Scholar 

  8. E.A. Kolganova, A.K. Motovilov, W. Sandhas, Few-Body Syst. 58, 35 (2017)

    Article  ADS  Google Scholar 

  9. M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, LPhH Schmidt, M. Schöffer, A. Czasch, W. Schöllkopf, R.E. Grisenti, C. Janke, D. Blume, R. Dörner, Science 348, 551 (2015)

    Article  ADS  Google Scholar 

  10. T. Kraemer, M. Mark, P. Waldburger, J.G. Danzl, C. Chin, B. Engeser, A.D. Lange, K. Pilch, A. Jaakkola, H.-C. Nagerl, R. Grimm, Nature 440, 315 (2006)

    Article  ADS  Google Scholar 

  11. B. Huang, L.A. Sidorenkov, R. Grimm, J.M. Hutson, Phys. Rev. Lett. 112, 190401 (2014)

    Article  ADS  Google Scholar 

  12. B. Huang, L.A. Sidorenkov, R. Grimm, Phys. Rev. A 91, 063622 (2015)

    Article  ADS  Google Scholar 

  13. V. Efimov, Nucl. Phys. A 210, 157 (1973)

    Article  ADS  Google Scholar 

  14. J.P. D’Incao, B.D. Esry, Phys. Rev. A 73, 030703(R) (2006)

    Article  ADS  Google Scholar 

  15. Y. Wang, J. Wang, J. P. D’Incao, and Ch. H. Greene, Phys. Rev. Lett. 109, 243201 (2012); Erratum, Phys. Rev. Lett. 115, 069901 (2015)

  16. G. Barontini, C. Weber, F. Rabatti, J. Catani, G. Thalhammer, M. Inguscio, F. Minardi, Phys. Rev. Lett. 103, 043201 (2009)

    Article  ADS  Google Scholar 

  17. R.S. Bloom, M.G. Hu, T.D. Cumby, D.S. Jin, Phys. Rev. Lett. 111, 105301 (2013)

    Article  ADS  Google Scholar 

  18. L.J. Wacker, N.B. Jorgensen, D. Birkmose, N. Winter, M. Mikkelsen, J. Sherson, N. Zinner, J.J. Arlt, Phys. Rev. Lett. 117, 163201 (2016)

    Article  ADS  Google Scholar 

  19. R.A.W. Maier, M. Eisele, E. Tiemann, C. Zimmermann, Phys. Rev. Lett. 115, 043201 (2015)

    Article  ADS  Google Scholar 

  20. S.K. Tung, K. Jimenez-Garcia, J. Johansen, C.V. Parker, C. Chin, Phys. Rev. Lett. 113, 240402 (2014)

    Article  ADS  Google Scholar 

  21. J. Ulmanis, S. Hä fner, R. Pires, F. Werner, D.S. Petrov, M. Weidemüller, E.D. Kuhnle, Phys. Rev. A 93, 022707 (2016)

    Article  ADS  Google Scholar 

  22. P. Naidon, Sh Endo, Rep. Prog. Phys. 80, 056001 (2017)

    Article  ADS  Google Scholar 

  23. ChH Greene, P. Giannakeas, J. Prez-Ros Rev. Mod. Phys. 89, 035006 (2017)

    Article  ADS  Google Scholar 

  24. H. Suno, B.D. Esry, Phys. Rev. A 80, 062702 (2009)

    Article  ADS  Google Scholar 

  25. H. Suno, Phys. Rev. A 96, 012508 (2017)

    Article  ADS  Google Scholar 

  26. M.-S. Wu, H.-L. Han, Ch-B Li, T.-Y. Shi, Phys. Rev. A 90, 062506 (2014)

    Article  ADS  Google Scholar 

  27. L.D. Faddeev, S.P. Merkuriev, Quantum Scattering Theory for Several Particle Systems (Kluwer Academic Publishers, Doderecht, 1993)

    Book  Google Scholar 

  28. V.V. Kostrykin, A.A. Kvitsinsky, S.P. Merkuriev, Few-Body Syst. 6, 97–113 (1989)

    Article  ADS  Google Scholar 

  29. E.A. Kolganova, Few-Body Syst. 58, 27 (2017)

    Article  ADS  Google Scholar 

  30. U. Kleinekathöfer, K.T. Tang, J.P. Toennies, C.I. Yiu, Chem. Phys. Lett. 249, 257 (1996)

    Article  ADS  Google Scholar 

  31. Z.C. Yan, J.F. Babb, A. Dalgarno, G.W.F. Drake, Phys. Rev. A 54, 2824 (1996)

    Article  ADS  Google Scholar 

  32. U. Kleinekathöfer, M. Lewerenz, M. Mladenoc, Phys. Rev. Lett. 83, 4717 (1999)

    Article  ADS  Google Scholar 

  33. K.T. Tang, J.P. Toennies, C.L. Yiu, Phys. Rev. Lett. 74, 1546 (1995)

    Article  ADS  Google Scholar 

  34. M. Przybytek, W. Cencek, J. Komasa, G. Lach, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 104, 183003 (2010); Erratum, Phys. Rev. Lett. 108, 129902 (2012)

  35. I. Mills, T. Cvitaŝ, K. Homann, N. Kallay, K. Kuchitsu, Quantities, Units and Symbols in Physical Chemistry, 2nd edn. (Blackwell Science, Oxford, 1993)

    Google Scholar 

  36. S. Zeller, M. Kunitski, J. Voigtsberger et al., PNAS 113, 14651 (2000); [arXiv:1601.03247]

  37. R. Grisenti, W. Schöllkopf, J.P. Toennies, G.C. Hegerfeld, T. Köhler, M. Stoll, Phys. Rev. Lett. 85, 2284 (2000)

    Article  ADS  Google Scholar 

  38. V.A. Roudnev, S.L. Yakovlev, S.A. Sofianos, Few-Body Syst. 37, 179 (2005)

    Article  ADS  Google Scholar 

  39. V.A. Roudnev, M. Cavagnero, J. Phys. B 45, 025101 (2012)

    Article  ADS  Google Scholar 

  40. E.A. Kolganova, V.A. Roudnev, M. Cavagnero, Phys. Atom. Nucl. 75, 1240 (2012)

    Article  ADS  Google Scholar 

  41. W. Cencek, M. Jeziorska, O. Akin-Ojo, K. Szalewicz, J. Phys. Chem. A 111, 11311 (2007)

    Article  Google Scholar 

  42. V. Kokoouline, F. Masnou-Seeuws, Phys. Rev. A 73, 012702 (2006)

    Article  ADS  Google Scholar 

  43. H. Suno, E. Hiyama, M. Kamimura, Few-Body Syst. 54, 1557 (2013)

    Article  ADS  Google Scholar 

  44. H. Suno, B.D. Esry, Phys. Rev. A 82, 062521 (2010)

    Article  ADS  Google Scholar 

  45. I. Baccarelli, G. Delgado-Barrio, F.A. Gianturco, T. Conzalez-Lezana, S. Miret-Artes, P. Villarreal, Europhys. Lett. 50, 567 (2000)

    Article  ADS  Google Scholar 

  46. C. Di Paola, F.A. Gianturco, F. Paesani, G. Delgado-Barrio, S. Miret-Artés, P. Villarreal, I. Baccarelli, T. González-Lezana, J. Phys. B 35, 2643 (2002)

    Article  ADS  Google Scholar 

  47. P. Stipanović, L. Vranješ Markić, D. Zarić, J. Boronat, J. Chem. Phys. 146, 014305 (2017)

    Article  ADS  Google Scholar 

  48. R.A. Aziz, M.J. Slaman, J. Chem. Phys. 94, 8047 (1991)

    Article  ADS  Google Scholar 

  49. M. Jeziorska, W. Cencek, K. Patkowski, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 127, 124303 (2007)

    Article  ADS  Google Scholar 

  50. D. Cvetko, A. Lansi, A. Morgante, F. Tommasini, P. Cortana, M.G. Dondi, J. Chem. Phys. 100, 2052 (1994)

    Article  ADS  Google Scholar 

  51. R.A. Aziz, F.R.W. McCourt, C.C.K. Wong, Mol. Phys. 61, 1487 (1987)

    Article  ADS  Google Scholar 

  52. J.M. Yuan, C.D. Lin, J. Phys. B 31, L637 (1998)

    Article  ADS  Google Scholar 

  53. A. Delfino, T. Frederico, L. Tomio, J. Chem. Phys. 113, 7874 (2000)

    Article  ADS  Google Scholar 

  54. E.A. Kolganova, A.K. Motovilov, W. Sandhas, Phys. Part. Nucl. 40, 206 (2009)

    Article  Google Scholar 

  55. H. Suno, B.D. Esry, Phys. Rev. A 89, 052701 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the author (EAK) would like to thank T. Frederico, A. Kievsky and P. Stipanović for stimulating discussions and also W. Sandhas and A.K. Motovilov for their constant interest to this work. The work of VR has been partially supported by RFBI grant 18-02-00492, the calculations have been performed in Resource Center “Computer Center of SPbU”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kolganova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection “Ludwig Faddeev Memorial”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolganova, E.A., Roudnev, V. Weakly Bound LiHe\(_2\) Molecules in the Framework of Three-Dimensional Faddeev Equations. Few-Body Syst 60, 32 (2019). https://doi.org/10.1007/s00601-019-1499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1499-7

Navigation