Skip to main content
Log in

Many-Body Forces with the Envelope Theory

  • Published:
Few-Body Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Many-body forces are sometimes a relevant ingredient in various fields, such as atomic, nuclear or hadronic physics. Their precise structure is generally difficult to uncover. So, phenomenological effective forces are often used in practice. Nevertheless, they are always very difficult to treat numerically. The envelope theory, also known as the auxiliary field method, is a very efficient technique to obtain approximate, but reliable, solutions of many-body systems with identical particles interacting via one- or two-body forces. It is adapted here to allow the treatment of a special form of many-body forces. In the most favourable cases, the approximate eigenvalues are analytical lower or upper bounds. Otherwise, numerical approximation can always be computed. Two examples of many-body forces are presented, and the critical coupling constants for generic attractive many-body potentials are computed. Finally, a semiclassical interpretation is given for the generic formula of the eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gattobigio, A. Kievsky, M. Viviani, Spectra of helium clusters with up to six atoms using soft-core potentials. Phys. Rev. A 84, 052503 (2011)

    Article  ADS  Google Scholar 

  2. S. Ishikawa, Three-body potentials in \(\alpha \)-particle model of light nuclei. Few Body Syst. 58, 37 (2017)

    Article  ADS  Google Scholar 

  3. M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, A three-body force model for the baryon spectrum. Phys. Lett. B 364, 231 (1995)

    Article  ADS  Google Scholar 

  4. V. Dmitrašinović, Cubic Casimir operator of SU\(_{{\rm C}}\)(3) and confinement in the nonrelativistic quark model. Phys. Lett. B 499, 135 (2001)

    Article  ADS  Google Scholar 

  5. S. Pepin, Fl Stancu, Three-body confinement force in hadron spectroscopy. Phys. Rev. D 65, 054032 (2002)

    Article  ADS  Google Scholar 

  6. B. Desplanques, C. Gignoux, B. Silvestre-Brac, P. González, J. Navarro, S. Noguera, The baryonic spectrum in a constituent quark model including a three-body force. Z. Phys. A 343, 331 (1992)

    Article  ADS  Google Scholar 

  7. E. Epelbaum, H. Krebs, U.-G. Meißner, \(\Delta \)-excitations and the three-nucleon force. Nucl. Phys. A 806, 65 (2008)

    Article  ADS  Google Scholar 

  8. C. Deng, J. Ping, H. Huang, F. Wang, Interpreting \(Z_c\)(3900) and \(Z_c\)(4025)/\(Z_c\)(4020) as charged tetraquark states. Phys. Rev. D 90, 054009 (2014)

    Article  ADS  Google Scholar 

  9. R.L. Hall, Energy trajectories for the \(N\)-boson problem by the method of potential envelopes. Phys. Rev. D 22, 2062 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  10. R.L. Hall, A geometrical theory of energy trajectories in quantum mechanics. J. Math. Phys. 24, 324 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. R.L. Hall, W. Lucha, F.F. Schöberl, Relativistic \(N\)-boson systems bound by pair potentials \(V(r_{ij}) = g(r^2_{ij})\). J. Math. Phys. 45, 3086 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. B. Silvestre-Brac, C. Semay, F. Buisseret, F. Brau, The quantum \({\cal{N}}\)-body problem and the auxiliary field method. J. Math. Phys. 51, 032104 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Semay, C. Roland, Approximate solutions for \(N\)-body Hamiltonians with identical particles in \(D\) dimensions. Res. Phys. 3, 231 (2013)

    Google Scholar 

  14. C. Semay, F. Buisseret, Bound cyclic systems with the envelope theory. Few Body Syst. 58, 151 (2017)

    Article  ADS  Google Scholar 

  15. C. Semay, Numerical tests of the envelope theory for few-boson systems. Few Body Syst. 56, 149 (2015)

    Article  ADS  Google Scholar 

  16. C. Semay, Improvement of the envelope theory with the dominantly orbital state method. Eur. Phys. J. Plus 130, 156 (2015)

    Article  ADS  Google Scholar 

  17. B. Silvestre-Brac, C. Semay, Duality relations in the auxiliary field method. J. Math. Phys. 52, 052107 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  18. W. Lucha, Relativistic virial theorems. Mod. Phys. Lett. A 5, 2473 (1990)

    Article  ADS  Google Scholar 

  19. C. Semay, General comparison theorem for eigenvalues of a certain class of Hamiltonians. Phys. Rev. A 83, 024101 (2011)

    Article  ADS  Google Scholar 

  20. N. Laskin, Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Wei, Comment on “Fractional quantum mechanics” and “Fractional Schrödinger equation”. Phys. Rev. E 93, 066103 (2016)

    Article  ADS  Google Scholar 

  22. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert W function. Adv. Comput. Math. 5, 329 (1996)

    Article  MathSciNet  Google Scholar 

  23. J.-M. Richard, S. Fleck, Limits on the domain of coupling constants for binding \(N\)-body systems with no bound subsystems. Phys. Rev. Lett. 73, 1464 (1994)

    Article  ADS  Google Scholar 

  24. H.S.M. Coxeter, Regular Polytopes (Dover Publications, New York, 1973)

    MATH  Google Scholar 

  25. M.G. Olsson, Universal behavior in excited heavy-light and light-light mesons. Phys. Rev. D 55, 5479 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Semay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semay, C., Sicorello, G. Many-Body Forces with the Envelope Theory. Few-Body Syst 59, 119 (2018). https://doi.org/10.1007/s00601-018-1441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1441-4

Navigation