Skip to main content
Log in

Constituent Counting Rules and Exotic Hadrons

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The constituent counting rules, i.e., the scaling behavior of amplitudes (in terms of the number of fundamental constituents) for exclusive processes when high energy scales are present, have been known for decades, and have been borne out in a number of experiments. Such scaling would be sensitive, in particular, to possible exotic multiquark content. Here we examine how one may use the rules to test for pentaquarks in electroproduction, or for tetraquarks in \(e^+ e^-\) annihilation. An interesting new type of scaling (separate Mandelstam s and t behavior) arises in the forward scattering direction. The correct scaling arises naturally in AdS/QCD, in which the amplitudes can be computed explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-K. Choi et al., [Belle Collaboration], Observation of a narrow charmonium-like state in exclusive \(B^\pm \rightarrow K^\pm \pi ^+ \pi ^- \! J/\psi \) Decays. Phys. Rev. Lett. 91, 262001 (2003). arXiv:hep-ex/0309032

  2. R.A. Schumacher, The rise and fall of pentaquarks in experiments. AIP Conf. Proc. 842, 409 (2006). arXiv:nucl-ex/0512042

    Article  ADS  Google Scholar 

  3. R. Aaij et al., [LHCb Collaboration], Observation of the resonant character of the \(Z(4430)^-\) State. Phys. Rev. Lett. 112, 222002 (2014). arXiv:1404.1903 [hep-ex]

  4. V.M. Abazov et al., [D0 Collaboration], Evidence for a \(B_s^0 \pi ^\pm \) State. Phys. Rev. Lett. 117, 022003 (2016). arXiv:1602.07588 [hep-ex]

  5. R. Aaij et al., [LHCb Collaboration], Observation of \(J \! / \! \psi \, p\) resonances consistent with pentaquark states in \(\Lambda_b^0 \rightarrow J \! / \! \psi \, K^- p\) decays. Phys. Rev. Lett. 115, 072001 (2015). arXiv:1507.03414 [hep-ex]

  6. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Heavy-quark QCD exotica. Prog. Part. Nucl. Phys. 93, 143 (2017). arXiv:1610.04528 [hep-ph]

    Article  ADS  Google Scholar 

  7. R.A. Briceño et al., Issues and opportunities in exotic hadrons. Chin. Phys. C 40, 042001 (2016). arXiv:1511.06779 [hep-ph]

    Article  ADS  Google Scholar 

  8. H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, The hidden-charm pentaquark and tetraquark states. Phys. Rep. 639, 1 (2016). arXiv:1601.02092 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Esposito, A. Pilloni, A.D. Polosa, Multiquark resonances. Phys. Rep. 668, 1 (2016). arXiv:1611.07920 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  10. F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Hadronic molecules. Rev. Mod. Phys. 90, 015004 (2018). arXiv:1705.00141 [hep-ph]

    Article  ADS  Google Scholar 

  11. A. Ali, J.S. Lange, S. Stone, Exotics: heavy pentaquarks and tetraquarks. Prog. Part. Nucl. Phys. 97, 123 (2017). arXiv:1706.00610 [hep-ph]

    Article  ADS  Google Scholar 

  12. S.L. Olsen, T. Skwarnicki, D. Zieminska, Non-standard heavy mesons and baryons, an experimental review. Rev. Mod. Phys. 90, 015003 (2018). arXiv:1708.04012 [hep-ph]

    Article  ADS  Google Scholar 

  13. M. Karliner, J.L. Rosner, T. Skwarnicki, Multiquark states. arXiv:1711.10626 [hep-ph]

  14. B. Dey et al. [CLAS Collaboration], Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction \(\gamma p \rightarrow \phi p\), Phys. Rev. C 89, 055208 (2014); addendum: [Phys. Rev. C 90, 019901 (2014)] arXiv:1403.2110 [nucl-ex]

  15. B. Dey, Phenomenology of \(\phi \) Photoproduction from recent CLAS data at Jefferson Lab. arXiv:1403.3730 [hep-ex]

  16. R.F. Lebed, Diquark substructure in \(\phi \) photoproduction. Phys. Rev. D 92, 114006 (2015). arXiv:1510.01412 [hep-ph]

    Article  ADS  Google Scholar 

  17. S.J. Brodsky, G.R. Farrar, Scaling laws at large transverse momentum. Phys. Rev. Lett. 31, 1153 (1973)

    Article  ADS  Google Scholar 

  18. V.A. Matveev, R.M. Muradian, A.N. Tavkhelidze, Automodellism in the large-angle elastic scattering and structure of hadrons. Lett. Nuovo Cim. 7, 719 (1973)

    Article  Google Scholar 

  19. S.J. Brodsky, R.F. Lebed, QCD dynamics of tetraquark production. Phys. Rev. D 91, 114025 (2015). arXiv:1505.00803 [hep-ph]

    Article  ADS  Google Scholar 

  20. S.J. Brodsky, R.F. Lebed, V.E. Lyubovitskij, QCD Compositeness as revealed in exclusive vector Boson reactions through double-photon annihilation: \(e^+ e^- \rightarrow \gamma \gamma ^\ast \rightarrow \gamma V^0 \) and \(e^+ e^- \rightarrow \gamma ^\ast \gamma ^\ast \rightarrow V^0 V^0\). Phys. Lett. B 764, 174 (2017). arXiv:1609.06635 [hep-ph]

    Article  ADS  Google Scholar 

  21. S.J. Brodsky, R.F. Lebed, V.E. Lyubovitskij, QCD constituent counting rules for neutral vector mesons. Phys. Rev. D 97, 034009 (2018). arXiv:1712.08853 [hep-ph]

    Article  ADS  Google Scholar 

  22. C. White et al., Comparison of 20 exclusive reactions at large \(t\). Phys. Rev. D 49, 58 (1994)

    Article  ADS  Google Scholar 

  23. H. Kawamura, S. Kumano, T. Sekihara, Determination of exotic Hadron structure by constituent-counting rule for hard exclusive processes. Phys. Rev. D 88, 034010 (2013). arXiv:1307.0362 [hep-ph]

    Article  ADS  Google Scholar 

  24. F.-K. Guo, U.-G. Meißner, W. Wang, On the constituent counting rule for hard exclusive processes involving multi-quark states. Chin. Phys. C 41, 053108 (2017). arXiv:1607.04020 [hep-ph]

    Article  ADS  Google Scholar 

  25. S.J. Brodsky, V.E. Lyubovitskij, Private communication

  26. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, New York, 1995)

    Google Scholar 

  27. M. Davier, M.E. Peskin, A. Snyder, Two-photon exchange model for production of neutral meson pairs in \(e^+ e^-\) annihilation. arXiv:hep-ph/0606155

  28. S.J. Brodsky, G.F. de Teramond, Light-front dynamics and AdS/QCD correspondence: the pion form factor in the space- and time-like regions. Phys. Rev. D 77, 056007 (2008). arXiv:0707.3859 [hep-ph]

    Article  ADS  Google Scholar 

  29. T. Branz, T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Light and heavy mesons in a soft-wall holographic approach. Phys. Rev. D 82, 074022 (2010). arXiv:1008.0268 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Lebed.

Additional information

Supported in part by the U.S. National Science Foundation under Grant No. PHY-1403891.

This article belongs to the Topical Collection “NSTAR 2017—The International Workshop on the Physics of Excited Nucleons”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebed, R.F. Constituent Counting Rules and Exotic Hadrons. Few-Body Syst 59, 106 (2018). https://doi.org/10.1007/s00601-018-1427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1427-2

Navigation