Few-Body Systems

, 59:101 | Cite as

From Few to Many Body Degrees of Freedom

  • Manuel Valiente
Open Access
Part of the following topical collections:
  1. Critical Stability 2017


Here, I focus on the use of microscopic, few-body techniques that are relevant in the many-body problem. These methods can be divided into indirect and direct. In particular, indirect methods are concerned with the simplification of the many-body problem by substituting the full, microscopic interactions by pseudopotentials which are designed to reproduce collisional information at specified energies, or binding energies in the few-body sector. These simplified interactions yield more tractable theories of the many-body problem, and are equivalent to effective field theory of interactions. Direct methods, which so far are most useful in one spatial dimension, have the goal of attacking the many-body problem at once by using few-body information only. Here, I will present non-perturbative direct methods to study one-dimensional fermionic and bosonic gases in one dimension.


  1. 1.
    S. Weinberg, Nuclear forces from chiral Lagrangians. Phys. Lett. B 251, 288 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    S. Weinberg, Effective chiral Lagrangians for nucleon-pion interactions and nuclear forces. Nucl. Phys. B 363, 3 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    D.R. Phillips, S.R. Beane, T.D. Cohen, Regularization and renormalization in effective field theories of the nucleon-nucleon interaction. Nucl. Phys. A 631, 447 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    D.B. Kaplan, M.J. Savage, M.B. Wise, A new expansion for nucleon-nucleon interactions. Phys. Lett. B 424, 390 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    D.B. Kaplan, M.J. Savage, M.B. Wise, Two-nucleon systems from effective field theory. Nucl. Phys. B 534, 329 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    A.N. Nicholson, Lattice methods and effective field theory , in An Advanced Course in Computational Nuclear Physics, (Springer, 2017), pp. 155–235. arXiv:1608.02563
  7. 7.
    J. Levinsen, P. Massignan, F. Chevy, C. Lobo, \(p\)-Wave polaron. Phys. Rev. Lett. 109, 075302 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    E. Epelbaum, in Proceedings of 8th International Workshop on Chiral Dynamics, Pisa, Italy. arXiv:1510.07036
  9. 9.
    E. Epelbaum, U.-G. Meißner, On the renormalization of the one-pion exchange potential and the consistency of Weinberg’s power counting. Few Body Syst. 54, 2175 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    B. Delamotte, A hint of renormalization. Am. J. Phys. 72, 170 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Taylor, Scattering Theory (Dover, Mineola, 2006)Google Scholar
  12. 12.
    M. Valiente, N.T. Zinner, Unitary fermions and Lüscher’s formula on a crystal. SCI. CHINA Phys. Mech. Astron. 59, 114211 (2016). arXiv:1506.05458
  13. 13.
    K. Huang, C.N. Yang, Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. 105, 767 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. Tan, Energetics of a strongly correlated Fermi gas. Ann. Phys. (NY) 323, 2952 (2008)Google Scholar
  15. 15.
    E. Braaten, How the tail wags the dog in ultracold atomic gases. Physics 2, 9 (2009)CrossRefGoogle Scholar
  16. 16.
    R. Combescot, F. Alzetto, X. Leyronas, Particle distribution tail and related energy formula. Phys. Rev. A 79, 053640 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M. Valiente, Tan’s distributions and Fermi-Huang pseudopotential in momentum space. Phys. Rev. A 85, 014701 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. II. Scattering states. Commun. Math. Phys. 105, 153 (1986)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    S.R. Beane, P.F. Bedaque, A. Parreno, M.J. Savage, Two nucleons on a lattice. Phys. Lett. B 585, 106 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    A. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (Dover, Mineola, 2003)zbMATHGoogle Scholar
  21. 21.
    H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics (Oxford University Press, Oxford, 2004)Google Scholar
  22. 22.
    D.C. Mattis, E.H. Lieb, Exact solution of a many-fermion system and its associated boson field. J. Math. Phys. 6, 304 (1965)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    F.D.M. Haldane, Luttinger liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless fermi gas. J. Phys. C Solid State Phys. 14, 2585 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    F.D.M. Haldane, General relation of correlation exponents and spectral properties of one-dimensional fermi systems: application to the anisotropic \(S=1/2\) Heisenberg chain. Phys. Rev. Lett. 45, 1358 (1980)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J.M. Luttinger, An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154 (1963)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Eggert, One-dimensional quantum wires: a pedestrian approach to bosonization, in A3 Foresight Summer School, Korea, 2006. arXiv:0708.0003
  27. 27.
    M. Karbach, G. Muller, Introduction to the Bethe ansatz I. Comput. Phys. 11, 36 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312 (1967)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    S. Murmann et al., Antiferromagnetic Heisenberg spin chain of a few cold atoms in a one-dimensional trap. Phys. Rev. Lett. 115, 215301 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    E.J. Lindgren, J. Rotureau, C. Forssén, A.G. Volosniev, N.T. Zinner, Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap. New J. Phys. 16, 063003 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    A.G. Volosniev et al., Strongly interacting confined quantum systems in one dimension. Nat. Commun. 5, 5300 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    M. Olshanii, V. Dunjko, Short-distance correlation properties of the Lieb-Liniger system and momentum distributions of trapped one-dimensional atomic gases. Phys. Rev. Lett. 91, 090401 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    M. Valiente, Exact equivalence between one-dimensional Bose gases interacting via hard-sphere and zero-range potentials. EPL 98, 10010 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    M. Valiente, P. Öhberg, Few-body route to one-dimensional quantum liquids. Phys. Rev. A 94, 051606 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    M.A. Cazalilla, Bosonizing one-dimensional cold atomic gases. J. Phys. B: At. Mol. Opt. Phys. 37, S1 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    M. Valiente, N.T. Zinner, Quantum collision theory in flat bands. J. Phys. B: At. Mol. Opt. Phys. 50, 064004 (2017)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.SUPA, Institute of Photonics and Quantum SciencesHeriot-Watt UniversityEdinburghUnited Kingdom

Personalised recommendations