Advertisement

Few-Body Systems

, 59:71 | Cite as

Endpoint Model of Exclusive Processes

Article
Part of the following topical collections:
  1. Light Cone 2017

Abstract

The endpoint model explains the scaling laws observed in exclusive hadronic reactions at large momentum transfer in all experimentally important regimes. The model, originally conceived by Feynman and others, assumes a single valence quark carries most of the hadron momentum. The quark wave function is directly related to the momentum transfer dependence of the reaction. After extracting the momentum dependence of the quark wave function from one process, it explains all the others. Endpoint quark-counting rules relate the number of quarks in a hadron to the power-law. A universal linear endpoint behavior explains the proton electromagnetic form factors \(F_{1}\) and \(F_{2}\), proton–proton scattering at fixed-angle, the t-dependence of proton–proton scattering at large \(s>> t\), and Compton scattering at fixed t. The model appears to be the only comprehensive mechanism consistent with all experimental information.

References

  1. 1.
    S.J. Brodsky, G.R. Farrar, Phys. Rev. D 11, 1309 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    G.R. Farrar, D.R. Jackson, Phys. Rev. Lett. 43, 246 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Efremov, A.V. Radyushkin, Theor. Math. Phys. 42, 97 (1980)CrossRefGoogle Scholar
  5. 5.
    A.V. Efremov, A.V. Radyushkin, Phys. Lett. B94, 245 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 2848 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    P.V. Landshoff, Phys. Rev. D 10, 1024 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    P.D.B. Collins, F.D. Gault, A. Martin, Nucl. Phys. B 85, 141 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    A. Donnachie, P.V. Landshoff, Z. Phys. C 2, 55 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    P.D.B. Collins, F.D. Gault, Phys. Lett. B 112, 255 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    A. Danagoulian et al., [Hall A Collaboration], Phys. Rev. Lett. 98, 152001 (2007)Google Scholar
  12. 12.
    N. Isgur, C. Llewelyn-Smith, Phys. Rev. Lett. 52, 1080 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    P. Jain, B. Pire, J.P. Ralston, Phys. Rep. 271, 67 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    S. Dagaonkar, P. Jain, J.P. Ralston, EPJC 74, 3000 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S. Dagaonkar, P. Jain, J.P. Ralston, EPJC 76, 368 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    S. Dagaonkar, arXiv:1611.00147
  17. 17.
    R.P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    S.D. Drell, T.-M. Yan, Phys. Rev. Lett. 24, 181 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    G.B. West, Phys. Rev. Lett. 24, 1206 (1970)ADSCrossRefGoogle Scholar
  20. 20.
    S.J. Brodsky, C.-R. Ji, M. Sawicki, Phys. Rev. D 32, 1530 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    M. Sawicki, Phys. Rev. D 32, 2666 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentI.I.T. KanpurKanpurIndia
  2. 2.Department of Physics and AstronomyUniversity of KansasLawrenceUSA

Personalised recommendations