Few-Body Systems

, 59:65 | Cite as

Impenetrability in Floquet Scattering in One Dimension

Article
  • 18 Downloads
Part of the following topical collections:
  1. Critical Stability 2017

Abstract

We study the scattering off a time-periodic zero-range potential in one spatial dimension. We focus on the parameter regions that lead to zero-transmission probability (ZTP). For static potentials, ZTP leads to fermionization of distinguishable equal-mass particles. For time-periodic potentials, fermionization is prevented by the formation of evanescent waves.

References

  1. 1.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1(6), 516–523 (1960)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    B. Paredes, A. Widera, V. Murg, O. Mandel, S. Folling, I. Cirac, G.V. Shlyapnikov, T.W. Hansch, I. Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    T. Kinoshita, T. Wenger, D.S. Weiss, Observation of a one-dimensional Tonks–Girardeau gas. Science 305(5687), 1125–1128 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    M.D. Girardeau, E.M. Wright, J.M. Triscari, Ground-state properties of a one-dimensional system of hard-core bosons in a harmonic trap. Phys. Rev. A 63, 033601 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    F. Deuretzbacher, K. Fredenhagen, D. Becker, K. Bongs, K. Sengstock, D. Pfannkuche, Exact solution of strongly interacting quasi-one-dimensional spinor Bose gases. Phys. Rev. Lett. 100, 160405 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A.G. Volosniev, D.V. Fedorov, M. Jensen, A.S. Valiente, N.T. Zinner, Strongly interacting confined quantum systems in one dimension. Nat. Commun. 5, 5300 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    P.F. Bagwell, R.K. Lake, Resonances in transmission through an oscillating barrier. Phys. Rev. B 46, 15329–15336 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    S.T. Thompson, E. Hodby, C.E. Wieman, Ultracold molecule production via a resonant oscillating magnetic field. Phys. Rev. Lett. 95, 190404 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    M. Büttiker, R. Landauer, Traversal time for tunneling. Phys. Rev. Lett. 49, 1739–1742 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    M. Büttiker, R. Landauer, Traversal time for tunneling. Phys. Scr. 32(4), 429 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    H. Landa, Phys. Rev. A 97, 042705 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    M. Wagner, Photon-assisted transmission through an oscillating quantum well: a transfer-matrix approach to coherent destruction of tunneling. Phys. Rev. A 51, 798–808 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    G. Burmeister, K. Maschke, Scattering by time-periodic potentials in one dimension and its influence on electronic transport. Phys. Rev. B 57, 13050–13060 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    W. Li, L.E. Reichl, Floquet scattering through a time-periodic potential. Phys. Rev. B 60, 15732–15741 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    M. Henseler, T. Dittrich, K. Richter, Classical and quantum periodically driven scattering in one dimension. Phys. Rev. E 64, 046218 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    T.M. Hanna, T. Köhler, K. Burnett, Association of molecules using a resonantly modulated magnetic field. Phys. Rev. A 75, 013606 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    C. Langmack, D.H. Smith, E. Braaten, Association of atoms into universal dimers using an oscillating magnetic field. Phys. Rev. Lett. 114, 103002 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    D.H. Smith, Inducing resonant interactions in ultracold atoms with a modulated magnetic field. Phys. Rev. Lett. 115, 193002 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    D.H. Smith, Induced two-body scattering resonances from a square-well potential with oscillating depth. EPJ Web Conf. 113, 02005 (2016)CrossRefGoogle Scholar
  22. 22.
    D. H. Smith, Resonant Floquet scattering of ultracold atoms, Ph.D. thesis. arXiv:1611.05412 (2016)
  23. 23.
    A.G. Sykes, H. Landa, D.S. Petrov, Two- and three-body problem with Floquet-driven zero-range interactions. Phys. Rev. A 95, 062705 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    P. Hänggi, Quantum Transport and Dissipation, Chapter 5 (Wiley-VCH, Weinheim, 1998) (edited by T. Dittrich) Google Scholar
  25. 25.
    R.K. Mallik, The inverse of a tridiagonal matrix. Linear Algebra Appl. 325(13), 109–139 (2001)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    M.E.A. El-Mikkawy, On the inverse of a general tridiagonal matrix. Appl. Math. Comput. 150(3), 669–679 (2004)MathSciNetMATHGoogle Scholar
  27. 27.
    G. Burmeister, K. Maschke, Bound states revealed by time-periodic perturbing scattering potentials. Phys. Rev. B 59, 4612–4614 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)ADSCrossRefMATHGoogle Scholar
  29. 29.
    A.G. Volosniev, H.-W. Hammer, N.T. Zinner, Real-time dynamics of an impurity in an ideal Bose gas in a trap. Phys. Rev. A 92, 023623 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    M. Ebert, A. Volosniev, H.-W. Hammer, Two cold atoms in a time-dependent harmonic trap in one dimension. Ann. Phys. 528(9–10), 693–704 (2016)CrossRefMATHGoogle Scholar
  31. 31.
    X.Y. Yin, Y. Yan, D.H. Smith, Dynamics of small trapped one-dimensional fermi gas under oscillating magnetic fields. Phys. Rev. A 94, 043639 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    K. Yajima, Scattering theory for Schrödinger equations with potentials periodic in time. J. Math. Soc. Jpn. 29, 729–743 (1977)CrossRefMATHGoogle Scholar
  33. 33.
    J.R. Taylor, Scattering Theory. The Quantum Theory of Nonrelativistic Collisions (Dover Publications Inc., Mineola, 2006)Google Scholar
  34. 34.
    J. Howland, Scattering theory for Hamiltonians periodic in time. Indiana J. Math. 28, 471–494 (1979)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of PhysicsThe Ohio State UniversityColumbusUSA

Personalised recommendations