Advertisement

Few-Body Systems

, 59:67 | Cite as

Condition for a Bounded System of Klein–Gordon Particles in Electric and Magnetic Fields

  • Hasan Fatih Kisoglu
  • Kenan Sogut
Article

Abstract

We investigate the motion of relativistic spinless particles in an external electromagnetic field that is considered to has a constant magnetic field and a time-dependent electric field. For such a system, we obtain analytical eigenfunctions through Asymptotic Iteration Method. We also obtain a condition of choosing the external magnetic field for which the system is bounded with usage of the method in perturbation theory.

References

  1. 1.
    T.P. Wangler, RF Linear Accelerators (Wiley, Hoboken, 2008)CrossRefGoogle Scholar
  2. 2.
    D.A. Edwards, H.T. Edwards, Rev. Accel. Sci. Technol. 01(01), 99 (2008)CrossRefGoogle Scholar
  3. 3.
    P.B. Wilson, Rev. Accel. Sci. Technol. 1, 7 (2008)CrossRefGoogle Scholar
  4. 4.
    T.F.D. Herman Suit, A. Trofimov, Rev. Accel. Sci. Technol. 2, 1 (2009)CrossRefGoogle Scholar
  5. 5.
    G. Wiebusch, J. Main, K. Krüger, H. Rottke, A. Holle, K. Welge, Phys. Rev. Lett. 62(24), 2821 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    L. Lam, J. Math. Phys. 12(02), 299 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    K. Bakke, H. Belich, Ann. Phys. 373, 115 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    K. Bakke, Eur. Phys. J. B 85, 354 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    I. Bialynicki-Birula, Ł. Rudnicki, A. Wienczek, arXiv preprint arXiv:1108.2615 (2011)
  10. 10.
    T. Adorno, S.P. Gavrilov, D.M. Gitman, Phys. Scr. 90(7), 074005 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    S. Kim, J. Phys. Conf. Ser. 594, 012050 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Sogut, A. Havare, Adv. High Energy Phys. 2014 (2014), Article ID 493120Google Scholar
  13. 13.
    P.J. Redmond, J. Math. Phys. 6(7), 1163 (1965)ADSCrossRefGoogle Scholar
  14. 14.
    R.L. Liboff, Phys. Rev. 141(1), 222 (1966)ADSCrossRefGoogle Scholar
  15. 15.
    F. Occhionero, M. Demianski, Phys. Rev. Lett. 23(19), 1128 (1969)ADSCrossRefGoogle Scholar
  16. 16.
    L. Lam, J. Math. Phys. 12(2), 299 (1971)ADSCrossRefGoogle Scholar
  17. 17.
    M. Grewing, H. Heintzmann, Phys. Lett. A 42(4), 325 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    H. Kleinert, R. Ruffini, S.S. Xue, Phys. Rev. D 78(2), 025011 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    K. Sogut, H. Yanar, A. Havare, Commun. Theor. Phys. 66(5), 521 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S.P. Kim, D.N. Page, Phys. Rev. D 73(6), 065020 (2006)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Fujii, K. Itakura, Nucl. Phys. A 809, 88 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    T. Lappi, L. McLerran, Nucl. Phys. A 772, 200 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    N. Tajni, Ann. Phys. 324, 1691 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    B.L. Spokoiny, Phys. Lett. A 88, 328 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    R. Burman, Proc. IEEE 54(06), 888Google Scholar
  26. 26.
    H. Ciftci, R.L. Hall, N. Saad, J. Phys. A Math. Gen. 36(47), 11807 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    H. Ciftci, R.L. Hall, N. Saad, Cent. Eur. J. Phys. 11(1), 37 (2013)Google Scholar
  28. 28.
    H. Ciftci, R.L. Hall, N. Saad, Phys. Rev. A 72(2), 022101 (2005)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Ciftci, R.L. Hall, N. Saad, Phys. Lett. A 340(5), 388 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    E. Olğar, R. Koç, H. Tütüncüler, Phys. Scr. 78(1), 015011 (2008)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    E. Olğar, Chin. Phys. Lett. 25(6), 1939 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    H. Ciftci, H. Kisoglu, Chin. Phys. B 25(3), 030201 (2016)CrossRefGoogle Scholar
  33. 33.
    H. Kisoglu, H. Ciftci, Commun. Theor. Phys. 67(4), 350 (2017)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    O. Bayrak, I. Boztosun, H. Ciftci, Int. J. Quantum Chem. 107(3), 540 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    O. Bayrak, I. Boztosun, J. Phys. A Math. Gen. 39(22), 6955 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    C.Y. Zhang, S.J. Zhang, B. Wang, Nucl. Phys. B 899, 37 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    W. Greiner, Relativistic Quantum Mechanics: Wave Equations, 3rd edn (Springer, Berlin, 2000)Google Scholar
  38. 38.
    C. Furtado, F. Moraes, V.B. Bezerra, Phys. Rev. D 59, 107504 (1999)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    R.L.L. Vitoria, K. Bakke, Int. J. Mod. Phys. D 27, 1850005 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    E.R. Figueiredo Medeiros, E.R. Bezerra de Mello, Eur. Phys. J. C 72, 2051 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    I.I. Rabi, Z. Phys. 49, 507 (1928)ADSCrossRefGoogle Scholar
  42. 42.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982)Google Scholar
  43. 43.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, Mineola, 1974)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Basic Sciences, Faculty of MaritimeMersin UniversityMersinTurkey
  2. 2.Department of Physics, Faculty of Science and LettersMersin UniversityMersinTurkey

Personalised recommendations