Few-Body Systems

, 59:59 | Cite as

Spin-1 Particles and Perturbative QCD

  • J. P. B. C. de Melo
  • T. Frederico
  • Chueng-Ryong Ji
Part of the following topical collections:
  1. Light Cone 2017


Due to the angular condition in the light-front dynamics (LFD), the extraction of the electromagnetic form factors for spin-1 particles can be uniquely determined taking into account implicitly non-valence and/or the zero-mode contributions to the matrix elements of the electromagnetic current. No matter which matrix elements of the electromagnetic current is used to extract the electromagnetic form factors, the same unique result is obtained. As physical observables, the electromagnetic form factors obtained from matrix elements of the current in LFD must be equal to those obtained in the instant form calculations. Recently, the Babar collaboration (Phys Rev D 78:071103, 2008) has analyzed the reaction \(e^+~+~e^-\rightarrow \rho ^+ + \rho ^-\) at \(\sqrt{s}=10.58\,\mathrm{GeV}\) to measure the cross section as well as the ratios of the helicity amplitudes \(F_{\lambda '\lambda }\). We present our recent analysis of the Babar data for the rho meson considering the angular condition in LFD to put a stringent test on the onset of asymptotic perturbative QCD and predict the energy regime where the subleading contributions are still considerable.


  1. 1.
    B. Aubert et al., [BaBar Collaboration], Observation of \(e^+ e^- \rightarrow \rho ^{+} \rho ^{-}\) near \(\sqrt{s}\) = 10.58-GeV. Phys. Rev. D 78, 071103 (2008)Google Scholar
  2. 2.
    T. Muta, Foundations of Quantum Chromodynamics, An Introduction to Perturbative Methods in Gauge Theories (Word Scientific, Singapore, 1987)CrossRefzbMATHGoogle Scholar
  3. 3.
    M.V. Terentev, On the structure of wave functions of mesons as bound states of relativistic quarks’. Sov. J. Nucl. Phys. 24, 106 (1976)Google Scholar
  4. 4.
    M.V. Terentev, On the structure of wave functions of mesons as bound states of relativistic quarks. Yad. Fiz. 24, 207 (1976)Google Scholar
  5. 5.
    L.A. Kondratyuk, M.V. Terentev, The scattering problem for relativistic systems with fixed number of particles. Sov. J. Nucl. Phys. 31, 561 (1980)Google Scholar
  6. 6.
    L.A. Kondratyuk, M.V. Terentev, The scattering problem for relativistic systems with fixed number of particles. Yad. Fiz. 31, 1087 (1980)Google Scholar
  7. 7.
    S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone. Phys. Rep. 301, 299 (1998)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J.P.B.C. de Melo, T. Frederico, Covariant and light front approaches to the rho meson electromagnetic form-factors. Phys. Rev. C 55, 2043 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    J.P.B.C. de Melo, J.H.O. Sales, T. Frederico, P.U. Sauer, Pairs in the light front and covariance. Nucl. Phys. A 631, 574C (1998)ADSCrossRefGoogle Scholar
  10. 10.
    H.W.L. Naus, J.P.B.C. de Melo, T. Frederico, Ward–Takahashi identity on the light front. Few Body Syst. 24, 99 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J.P.C.B. de Melo, H.W.L. Naus, T. Frederico, Pion electromagnetic current in the light cone formalism. Phys. Rev. C 59, 2278 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    H.M. Choi, C.-R. Ji, Electromagnetic structure of the rho meson in the light front quark model. Phys. Rev. D 70, 053015 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    H.M. Choi, C.-R. Ji, Nonvanishing zero modes in the light front current. Phys. Rev. D 58, 071901 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    B.L.G. Bakker, H.M. Choi, C.-R. Ji, The vector meson form-factor analysis in light front dynamics. Phys. Rev. D 65, 116001 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    L. Grach, L.A. Kondratyuk, The electromagnetic form factor of the deuteton in relativistic dynamics. The two nucleon and the six components. Sov. J. Nucl. Phys. 39, 198 (1984)Google Scholar
  16. 16.
    L.L. Frankfurt, I.L. Grach, L.A. Kondratyuk, M.C. Strikman, Is the structure in the deuteron magnetic form factor at \(Q^2~\approx ~\) new evidence for nuclear core? Phys. Rev. Lett. 62, 387 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    P.L. Chung, W.N. Polyzou, F. Coester, B.D. Keister, Hamiltonian light front dynamics of elastic electron Deuteron scattering. Phys. Rev. C 37, 2000 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    L.L. Frankfurt, M. Strikman, T. Frederico, Deuteron form-factors in the light cone quantum mechanics ‘good’ component approach. Phys. Rev. C 48, 2182 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    S.J. Brodsky, J.R. Hiller, Universal properties of the electromagnetic interactions of spin one systems. Phys. Rev. D 46, 2141 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    V.A. Karmanov, On ambiguities of the spin-1 electromagnetic form-factors in light front dynamics. Nucl. Phys. A 608, 316 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    F. Cardarelli, I.L. Grach, I.M. Narodetsky, G. Salme, S. Simula, Electromagnetic form-factors of the rho meson in a light front constituent quark model. Phys. Lett. B 349, 393 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    C.E. Carlson, F. Gross, Phys. Rev. Lett. 53, 127 (1984)ADSCrossRefGoogle Scholar
  23. 23.
    C.E. Carlson 1984, Nucl.Phys. A 508, 481c (1990)Google Scholar
  24. 24.
    A. Dennig, G. Salmé, Prog. Part. Nucl. Phys. 68, 113 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A. Dbeyssi, E. Tomasi-Gustafsson, G.I. Gakh, C. Adamuščín, Experimental constraint on the \(\rho \) meson form factors in the time-like region. Phys. Rev. C 85, 048201 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    J.P.B.C. de Melo, C.-R. Ji, T. Frederico, The \(\rho \)-meson time-like form factors in sub-leading pQCD. Phys. Lett. B 763, 87 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    A. Akhiezer, M.P. Rekalo, Electrodynamics of Hadrons (Naukova Dumka, Kiev, 1977). (in Russian) Google Scholar
  28. 28.
    A.P. Kobushkin, A.I. Syamtomov, Deuteron electromagnetic form-factors in the transitional region between nucleon-meson and quark-gluon pictures. Phys. Atom. Nucl. 58, 1477 (1995)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • J. P. B. C. de Melo
    • 1
  • T. Frederico
    • 2
  • Chueng-Ryong Ji
    • 3
  1. 1.Laboratorio de Física Teórica e Computação CientíficaUniversidade Cruzeiro do SulSão PauloBrazil
  2. 2.Instituto Tecnológico de AeronáuticaSaõ José dos CamposBrazil
  3. 3.Department of PhysicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations