Few-Body Systems

, 59:47 | Cite as

Covariance Matrix for Helicity Couplings

Article
  • 10 Downloads
Part of the following topical collections:
  1. NSTAR 2017

Abstract

The helicity couplings at \(Q^2=0\) for excited baryonic states have been determined in the past, but no information is available regarding their correlations that are relevant for comparison to theory. We present here our calculation of such correlations between the helicity couplings. They contain information for quantitative comparisons with theoretical values, they can be used to quantify the impact of polarization observables, and can help design new experiments.

Notes

Acknowledgements

This work is supported by the National Science Foundation (CAREER grant PHY-1452055, NSF/PIF grant No. 1415459), and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 and grant No. DE-SC001658.

References

  1. 1.
    I.G. Aznauryan, V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012).  https://doi.org/10.1016/j.ppnp.2011.08.001 ADSCrossRefGoogle Scholar
  2. 2.
    B. Golli, S. Širca, Eur. Phys. J. A 49, 111 (2013).  https://doi.org/10.1140/epja/i2013-13111-y ADSCrossRefGoogle Scholar
  3. 3.
    M. Ronniger, B.C. Metsch, Eur. Phys. J. A 49, 8 (2013).  https://doi.org/10.1140/epja/i2013-13008-9 ADSCrossRefGoogle Scholar
  4. 4.
    G. Ramalho, M.T. Pena, Phys. Rev. D 80, 013008 (2009).  https://doi.org/10.1103/PhysRevD.80.013008 ADSCrossRefGoogle Scholar
  5. 5.
    S. Capstick, Phys. Rev. D 46, 2864 (1992).  https://doi.org/10.1103/PhysRevD.46.2864 ADSCrossRefGoogle Scholar
  6. 6.
    M. Döring, D. Jido, E. Oset, Eur. Phys. J. A 45, 319 (2010).  https://doi.org/10.1140/epja/i2010-11015-0 ADSCrossRefGoogle Scholar
  7. 7.
    D. Jido, M. Döring, E. Oset, Phys. Rev. C 77, 065207 (2008).  https://doi.org/10.1103/PhysRevC.77.065207 ADSCrossRefGoogle Scholar
  8. 8.
  9. 9.
    T.A. Gail, T.R. Hemmert, Eur. Phys. J. A 28, 91 (2006).  https://doi.org/10.1140/epja/i2006-10023-y ADSCrossRefGoogle Scholar
  10. 10.
    J. Segovia, C.D. Roberts, Phys. Rev. C 94(4), 042201 (2016).  https://doi.org/10.1103/PhysRevC.94.042201 ADSCrossRefGoogle Scholar
  11. 11.
    J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloet, C.D. Roberts, S.S. Xu, H.S. Zong, Phys. Rev. Lett. 115(17), 171801 (2015).  https://doi.org/10.1103/PhysRevLett.115.171801 ADSCrossRefGoogle Scholar
  12. 12.
    D.J. Wilson, I.C. Cloet, L. Chang, C.D. Roberts, Phys. Rev. C 85, 025205 (2012).  https://doi.org/10.1103/PhysRevC.85.025205 ADSCrossRefGoogle Scholar
  13. 13.
    C. Alexandrou, G. Koutsou, J.W. Negele, Y. Proestos, A. Tsapalis, Phys. Rev. D 83, 014501 (2011).  https://doi.org/10.1103/PhysRevD.83.014501 ADSCrossRefGoogle Scholar
  14. 14.
    H.W. Lin, S.D. Cohen, R.G. Edwards, D.G. Richards, Phys. Rev. D 78, 114508 (2008).  https://doi.org/10.1103/PhysRevD.78.114508 ADSCrossRefGoogle Scholar
  15. 15.
    A. Agadjanov, V. Bernard, U.G. Meißner, A. Rusetsky, Nucl. Phys. B 886, 1199 (2014).  https://doi.org/10.1016/j.nuclphysb.2014.07.023 ADSCrossRefGoogle Scholar
  16. 16.
    P. Collins et al., Phys. Lett. B 771, 213 (2017).  https://doi.org/10.1016/j.physletb.2017.05.045 ADSCrossRefGoogle Scholar
  17. 17.
    I. Senderovich et al., Phys. Lett. B 755, 64 (2016).  https://doi.org/10.1016/j.physletb.2016.01.044 ADSCrossRefGoogle Scholar
  18. 18.
    A. Thiel et al., Eur. Phys. J. A 53(1), 8 (2017).  https://doi.org/10.1140/epja/i2017-12194-8 ADSCrossRefGoogle Scholar
  19. 19.
    J. Hartmann et al., Phys. Lett. B 748, 212 (2015).  https://doi.org/10.1016/j.physletb.2015.07.008 ADSCrossRefGoogle Scholar
  20. 20.
    M. Dieterle et al., Phys. Lett. B 770, 523 (2017).  https://doi.org/10.1016/j.physletb.2017.04.079 ADSCrossRefGoogle Scholar
  21. 21.
    L. Witthauer et al., Phys. Rev. C 95(5), 055201 (2017).  https://doi.org/10.1103/PhysRevC.95.055201 ADSCrossRefGoogle Scholar
  22. 22.
    A.V. Anisovich et al., Eur. Phys. J. A 52(9), 284 (2016).  https://doi.org/10.1140/epja/i2016-16284-9 ADSCrossRefGoogle Scholar
  23. 23.
    Y. Wunderlich, F. Afzal, A. Thiel, R. Beck, Eur. Phys. J. A 53(5), 86 (2017).  https://doi.org/10.1140/epja/i2017-12255-0 ADSCrossRefGoogle Scholar
  24. 24.
    Y.I. Azimov, I.I. Strakovsky, W.J. Briscoe, R.L. Workman, Phys. Rev. C 95(2), 025205 (2017).  https://doi.org/10.1103/PhysRevC.95.025205 ADSCrossRefGoogle Scholar
  25. 25.
    D. Rönchen, M. Döring, H. Haberzettl, J. Haidenbauer, U.G. Meißner, K. Nakayama, Eur. Phys. J. A 51(6), 70 (2015).  https://doi.org/10.1140/epja/i2015-15070-7 ADSCrossRefGoogle Scholar
  26. 26.
    R.L. Workman, L. Tiator, A. Sarantsev, Phys. Rev. C 87(6), 068201 (2013).  https://doi.org/10.1103/PhysRevC.87.068201 ADSCrossRefGoogle Scholar
  27. 27.
    D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.G. Meißner, K. Nakayama, Eur. Phys. J. A 50(6), 101 (2014).  https://doi.org/10.1140/epja/i2014-14101-3,  https://doi.org/10.1140/epja/i2015-15063-6 [Erratum: Eur. Phys. J. A51, no. 5, 63(2015)]

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The George Washington UniversityWashingtonUSA
  2. 2.Thomas Jefferson National Accelerator FacilityNewport NewsUSA

Personalised recommendations