Nucleon Resonance Structure from Exclusive Meson Electroproduction with CLAS
- 6 Downloads
Abstract
Studies of the nucleon resonance electroexcitation amplitudes in a wide range of photon virtualities offer unique information on many facets of strong QCD behind the generation of all prominent excited nucleon states of distinctively different structure. Advances in the evaluation of resonance electroexcitation amplitudes from the data measured with the CLAS detector and the future extension of these studies with the CLAS12 detector at Jefferson Lab are presented. For the first time, analyses of \(\pi ^0p\), \(\pi ^+n\), \(\eta p\), and \(\pi ^+\pi ^-p\) electroproduction off proton channels have provided electroexcitation amplitudes of most resonances in the mass range up to 1.8 GeV and at photon virtualities \(Q^2 < 5\) GeV\(^2\). Consistent results on resonance electroexcitation amplitudes determined from different exclusive channels validate a credible extraction of these fundamental quantities. Studies of the resonance electroexcitation amplitudes revealed the \(N^*\) structure as a complex interplay between the inner core of three dressed quarks and the external meson–baryon cloud. The successful description of the \(\varDelta (1232)3/2^+\) and \(N(1440)1/2^+\) electrocouplings achieved within the Dyson–Schwinger Equation approach under a traceable connection to the QCD Lagrangian and supported by the novel light front quark model demonstrated the relevance of dressed quarks with dynamically generated masses as an active structural component in baryons. Future experiments with the CLAS12 detector will offer insight into the structure of all prominent resonances at the highest photon virtualities, \(Q^2 < 12\) GeV\(^2\), ever achieved in exclusive reactions, thus addressing the most challenging problems of the Standard Model on the nature of hadron mass, quark–gluon confinement, and the emergence of nucleon resonance structures from QCD. A search for new states of hadronic matter, the so-called hybrid-baryons with glue as a structural component, will complete the long term efforts on the resonance spectrum exploration.
References
- 1.D. Binosi et al., Phys. Rev. D 96, 054026 (2017)ADSCrossRefGoogle Scholar
- 2.V.D. Burkert, The 11th International Workshop on the Physics of Excited Nucleons - N*2017. See these proceedings (2017)Google Scholar
- 3.C.D. Roberts, The 11th International Workshop on the Physics of Excited Nucleons - N*2017. See these proceedings (2017)Google Scholar
- 4.I.G. Aznauryan, V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012)ADSCrossRefGoogle Scholar
- 5.V.D. Burkert, C.D. Roberts, arXiv:1710.02549 [nucl-ex] (2017)
- 6.I.G. Aznauryan, Phys. Rev. C 76, 025212 (2007)ADSCrossRefGoogle Scholar
- 7.I.G. Aznauryan, V.D. Burkert, Phys. Rev. C 85, 055202 (2012)ADSCrossRefGoogle Scholar
- 8.I.G. Aznauryan, V.D. Burkert, Phys. Rev. C 95, 065207 (2017)ADSCrossRefGoogle Scholar
- 9.I.T. Obukhovsky et al., Phys. Rev. D 84, 014004 (2011)ADSCrossRefGoogle Scholar
- 10.T. Gutsche, V.E. Lyubovitskij, I. Schmidt arXiv:1712.08410 [hep-ph] (2017)
- 11.M.M. Giannini, E. Santopinto, Chin. J. Phys. 53, 020301 (2015)Google Scholar
- 12.N. Suzuki, T. Sato, T.-S.H. Lee, Phys. Rev. C 82, 045206 (2010)ADSCrossRefGoogle Scholar
- 13.V.M. Braun et al., Phys. Rev. D 89, 094511 (2014)ADSCrossRefGoogle Scholar
- 14.I.V. Anikin et al., Phys. Rev. D 92, 014018 (2015)ADSCrossRefGoogle Scholar
- 15.C. Mezrag et al., arXiv:1711.09101 [nucl-th] (2017)
- 16.I. Aznauryan et al., Phys. Rev. C 80, 055203 (2009)ADSCrossRefGoogle Scholar
- 17.C.D. Roberts, Few Body Syst. 58, 5 (2017)ADSCrossRefGoogle Scholar
- 18.J. Segovia et al., Few Body Syst. 55, 1185 (2015)ADSCrossRefGoogle Scholar
- 19.J. Segovia et al., Phys. Rev. Lett. 115, 171801 (2015)ADSCrossRefGoogle Scholar
- 20.D. Binosi et al., Phys. Rev. D 95, 031501 (2017)ADSCrossRefGoogle Scholar
- 21.C. Chen et al., arXiv:1711.03142 [nucl-th] (2017)
- 22.C.D. Roberts, J. Phys. Conf. Ser. 706, 022003 (2016)CrossRefGoogle Scholar
- 23.The 2015 Long Range Plan for Nuclear Science. https://science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf
- 24.CLAS physics database. http://clasweb.jlab.org/physicsdb
- 25.H. Kamano, The 11th International Workshop on the Physics of Excited Nucleons - N* 2017. See these proceedings (2017)Google Scholar
- 26.K. Park et al., (CLAS Collaboration), Phys. Rev. C 91, 045203 (2015)Google Scholar
- 27.I.G. Aznauryan, Phys. Rev. C 68, 065204 (2003)ADSCrossRefGoogle Scholar
- 28.M. Ripani et al., (CLAS Collaboration), Phys. Rev. Lett. 91, 022002 (2003)Google Scholar
- 29.G.V. Fedotov et al., (CLAS Collaboration), Phys. Rev. C 79, 014204 (2009)Google Scholar
- 30.E.L. Isupov et al., (CLAS Collaboration), Phys. Rev. C 96, 025209 (2017)Google Scholar
- 31.V.I. Mokeev et al., Phys. Rev. C 80, 045212 (2009)ADSCrossRefGoogle Scholar
- 32.V.I. Mokeev et al., (CLAS Collaboration), Phys. Rev. C 86, 055203 (2012)Google Scholar
- 33.V.I. Mokeev et al., Phys. Rev. C 93, 025206 (2016)ADSCrossRefGoogle Scholar
- 34.Nucleon Resonance Photo-/Electrocouplings Determined from Analyses of Experimental Data on Exclusive Meson Electroproduction off Protons. https://userweb.jlab.org/~mokeev/resonance_electrocouplings/
- 35.Fit of the Resonance Electrocouplings. https://userweb.jlab.org/~isupov/couplings/
- 36.C. Patrignani et al., (Particle Data Group), Chin. Phys. C 40(10), 100001 (2016)Google Scholar
- 37.M. Dugger et al., (CLAS Collaboration), Phys. Rev. C 79, 065206 (2009)Google Scholar
- 38.A.V. Anisovich et al., Eur. Phys. J. A 48, 15 (2012)ADSCrossRefGoogle Scholar
- 39.A.V. Anisovich et al., Eur. Phys. J. A 50, 129 (2014)ADSCrossRefGoogle Scholar
- 40.D.S. Carman, The 11th International Workshop on the Physics of Excited Nucleons - N*2017. See these proceedings (2017)Google Scholar
- 41.B. Julia-Diaz et al., Phys. Rev. C 77, 045205 (2008)ADSCrossRefGoogle Scholar
- 42.E. Santopinto, M.M. Giannini, Phys. Rev. C 86, 065202 (2012)ADSCrossRefGoogle Scholar
- 43.See CLAS12 webpage at http://www.jlab.org/Hall-B/clas12-web
- 44.I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013)ADSCrossRefGoogle Scholar
- 45.A. D’Angelo, V.D. Burkert, D.S. Carman, E. Golovatch, R. Gothe, V. Mokeev, A Search for Hybrid Baryons in Hall B with CLAS12, JLab Experiment E12-09-003Google Scholar
- 46.J.J. Dudek, R.G. Edwards, Phys. Rev. D 85, 054016 (2012)ADSCrossRefGoogle Scholar
- 47.V. Mathieu, G. Fox, A.P. Szczepaniak, Phys. Rev. D 92, 074013 (2015)ADSCrossRefGoogle Scholar
- 48.I. Strakovsky et al., EPJ Web Conf. 73, 04003 (2014)CrossRefGoogle Scholar
- 49.H. Kamano, S.X. Nakamura, T.-S.H. Lee, Phys. Rev. C 88, 035209 (2013)ADSCrossRefGoogle Scholar
- 50.V.D. Burkert, P. Cole, R. Gothe, K. Joo, V. Mokeev, P. Stoler, Nucleon Resonance Studies with CLAS12, JLab Experiment E12-09-003Google Scholar
- 51.D.S. Carman, R. Gothe, V. Mokeev, Exclusive \(N^* \rightarrow KY\) Studies with CLAS12, JLab Experiment E12-06-108AGoogle Scholar
- 52.D.S. Carman, R. Gothe, V. Mokeev, Nucleon Resonance Structure Studies Via Exclusive \(KY\) Electroproduction at 6.6 GeV and 8.8 GeV, JLab Experiment E12-16-010AGoogle Scholar
- 53.R. Briceno, The 11th International Workshop on the Physics of Excited Nucleons - N*2017. See these proceedings (2017)Google Scholar
- 54.N. Isgur, in Why N\(^*\) are important, ed. by V.D. Burkert, L. Elouadrhiri, J.J. Kelly, R.C. Minehart, Proceedings of the NSTAR2000 Conference, 16–19 Feb 2000, Newport News, USA, vol 403 (World Scientific, 2001)Google Scholar