Entanglement in Spatial Adiabatic Processes for Interacting Atoms

Abstract

We study the dynamics of the non-classical correlations for few atom systems in the presence of strong interactions for a number of recently developed adiabatic state preparation protocols. We show that entanglement can be created in a controlled fashion and can be attributed to two distinct sources, the atom–atom interaction and the distribution of atoms among different traps.

References

  1. 1.

    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  3. 3.

    T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, Observation of eight-photon entanglement. Nat. Photonics 6, 225 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, From few to many: observing the formation of a Fermi sea one atom at a time. Science 342, 457 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    S. Murmann, A. Bergschneider, V.M. Klinkhamer, G. Zürn, T. Lompe, S. Jochim, Two fermions in a double well: exploring a fundamental building block of the hubbard model. Phys. Rev. Lett. 114, 080402 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    S. Kokkelmans, Feshbach Resonances in Ultracold Gases, in Quantum Gas Experiments, vol. 4 (Imperial College Press, London, 2014), p. 63

    Google Scholar 

  8. 8.

    R. Menchon-Enrich, A. Benseny, V. Ahufinger, A.D. Greentree, Th Busch, J. Mompart, Spatial adiabatic passage: a review of recent progress. Rep. Prog. Phys. 79, 074401 (2016)

    ADS  Article  Google Scholar 

  9. 9.

    A. Benseny, J. Gillet, Th Busch, Spatial adiabatic passage via interaction-induced band separation. Phys. Rev. A 93, 033629 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    I. Reshodko, A. Benseny, Th Busch, Robust boson dispenser: quantum state preparation in interacting many-particle systems. Phys. Rev. A 96, 023606 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938 (1998)

    ADS  Article  Google Scholar 

  12. 12.

    Th Busch, B.-G. Englert, K. Rzazewski, M. Wilkens, Two cold atoms in a harmonic trap. Found. Phys. 28, 549 (1998)

    Article  Google Scholar 

  13. 13.

    S. Taie, T. Ichinose, H. Ozawa, Y. Takahashi, Spatial adiabatic passage of massive quantum particles, arXiv:1708.01100 [cond-mat.quant-gas]

  14. 14.

    K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, J. Mompart, Three-level atom optics via the tunneling interaction. Phys. Rev. A 70, 023606 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    N.V. Vitanov, A.A. Rangelov, B.W. Shore, K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017)

    ADS  Article  Google Scholar 

  16. 16.

    I. Afek, O. Ambar, Y. Silberberg, High-NOON states by mixing quantum and classical light. Science 328, 879 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    H. Lee, P. Kok, J.P. Dowling, A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A.J. Daley, A. Kantian, H.P. Büchler, P. Zoller, Repulsively bound atom pairs in an optical lattice. Nature 441, 853 (2006)

    ADS  Article  Google Scholar 

  19. 19.

    G. Mazzarella, S.M. Giampaolo, F. Illuminati, Extended Bose–Hubbard model of interacting bosonic atoms in optical lattices: from superfluidity to density waves. Phys. Rev. A 73, 013625 (2006)

    ADS  Article  Google Scholar 

  20. 20.

    U. Bissbort, F. Deuretzbacher, W. Hofstetter, Effective multibody-induced tunnelling and interactions in the Bose–Hubbard model of the lowest dressed band of an optical lattice. Phys. Rev. A 86, 023617 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    D.-S. Lühmann, O. Jürgensen, K. Sengstock, Multi-orbital and density-induced tunnelling of bosons in optical lattices. New J. Phys. 14, 033021 (2012)

    Article  Google Scholar 

  22. 22.

    M. Maik, P. Hauke, O. Dutta, M. Lewenstein, J. Zakrzewski, Density-dependent tunnelling in the extended Bose–Hubbard model. New J. Phys. 15, 113041 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    W. Ganczarek, M. Modugno, G. Pettini, J. Zakrzewski, Wannier functions for one-dimensional \(s\)-\(p\) optical superlattices. Phys. Rev. A 90, 033621 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    M. Kremer, R. Sachdeva, A. Benseny, Th Busch, Interaction-induced effects on Bose–Hubbard parameters. Phys. Rev. A 96, 063611 (2017)

    ADS  Article  Google Scholar 

  25. 25.

    D.S. Murphy, J.F. McCann, J. Goold, Th Busch, Boson pairs in a one-dimensional split trap. Phys. Rev. A 76, 053616 (2007)

    ADS  Article  Google Scholar 

  26. 26.

    T. Fogarty, Th Busch, J. Goold, M. Paternostro, Non-locality of two ultracold trapped atoms New. J. Phys. 13, 023016 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Okinawa Institute of Science and Technology Graduate University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Albert Benseny.

Additional information

This article belongs to the Topical Collection “Critical Stability of Quantum Few-Body Systems”.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benseny, A., Reshodko, I. & Busch, T. Entanglement in Spatial Adiabatic Processes for Interacting Atoms. Few-Body Syst 59, 48 (2018). https://doi.org/10.1007/s00601-018-1366-y

Download citation