Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Few-Body Systems
  3. Article
Entanglement in Spatial Adiabatic Processes for Interacting Atoms
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Weak Measurement Effects on Dynamics of Quantum Correlations in a Two-Atom System in Thermal Reservoirs

30 April 2022

N. Ananth, R. Muthuganesan & V. K. Chandrasekar

Superadiabatic Shortcuts for Fast Generating Two-Atom Four-Dimensional Entanglement

05 December 2018

Ju-Cheng Dong, Jin-Lei Wu & Xin Ji

Entanglement, quantum correlations in a system of the two coupled atoms interacting with a thermal field under intensity-dependent coupling

21 August 2022

Dong Mei Zhu, S. Sachuerfu, … B. Gegentuya

Some features of the nonlocal correlation and geometric phase of the quantum system in two-mode nondegenerate entangled states

17 August 2019

Sadah A. Alkhateeb & S. Abdel-Khalek

Quantized study for asymmetric two two-level atoms interacting with intensity-dependent coupling regime

28 October 2022

M. H. Raddadi, Abdallah A. Nahla & D. A. M. Abo-Kahla

Weak Measurement-Assisted Coherence Enhancement with Initial System-Environment Correlation

08 November 2019

Xing Xiao, Yuxiang Lian & Yan-Ling Li

Dynamics of a Moving Two-Level Atom Under the Influence of Intrinsic Decoherence

01 September 2018

S. Jamal Anwar, Sayyam & M. Usman

Entanglement production by the magnetic dipolar interaction dynamics

17 August 2018

Douglas F. Pinto & Jonas Maziero

Protecting the entanglement of two interacting atoms in a cavity by quantum Zeno dynamics

24 May 2021

M. A. Fasihi, M. Khanzadeh, … S. Ebrahimi Asl

Download PDF

Associated Content

Part of a collection:

Critical Stability 2017

  • Open Access
  • Published: 06 April 2018

Entanglement in Spatial Adiabatic Processes for Interacting Atoms

  • Albert Benseny  ORCID: orcid.org/0000-0003-4785-09451,
  • Irina Reshodko  ORCID: orcid.org/0000-0001-8453-19061 &
  • Thomas Busch  ORCID: orcid.org/0000-0003-0535-28331 

Few-Body Systems volume 59, Article number: 48 (2018) Cite this article

  • 358 Accesses

  • 3 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We study the dynamics of the non-classical correlations for few atom systems in the presence of strong interactions for a number of recently developed adiabatic state preparation protocols. We show that entanglement can be created in a controlled fashion and can be attributed to two distinct sources, the atom–atom interaction and the distribution of atoms among different traps.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  3. T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  4. X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, Observation of eight-photon entanglement. Nat. Photonics 6, 225 (2012)

    Article  ADS  Google Scholar 

  5. A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, From few to many: observing the formation of a Fermi sea one atom at a time. Science 342, 457 (2013)

    Article  ADS  Google Scholar 

  6. S. Murmann, A. Bergschneider, V.M. Klinkhamer, G. Zürn, T. Lompe, S. Jochim, Two fermions in a double well: exploring a fundamental building block of the hubbard model. Phys. Rev. Lett. 114, 080402 (2015)

    Article  ADS  Google Scholar 

  7. S. Kokkelmans, Feshbach Resonances in Ultracold Gases, in Quantum Gas Experiments, vol. 4 (Imperial College Press, London, 2014), p. 63

    Google Scholar 

  8. R. Menchon-Enrich, A. Benseny, V. Ahufinger, A.D. Greentree, Th Busch, J. Mompart, Spatial adiabatic passage: a review of recent progress. Rep. Prog. Phys. 79, 074401 (2016)

    Article  ADS  Google Scholar 

  9. A. Benseny, J. Gillet, Th Busch, Spatial adiabatic passage via interaction-induced band separation. Phys. Rev. A 93, 033629 (2016)

    Article  ADS  Google Scholar 

  10. I. Reshodko, A. Benseny, Th Busch, Robust boson dispenser: quantum state preparation in interacting many-particle systems. Phys. Rev. A 96, 023606 (2017)

    Article  ADS  Google Scholar 

  11. M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938 (1998)

    Article  ADS  Google Scholar 

  12. Th Busch, B.-G. Englert, K. Rzazewski, M. Wilkens, Two cold atoms in a harmonic trap. Found. Phys. 28, 549 (1998)

    Article  Google Scholar 

  13. S. Taie, T. Ichinose, H. Ozawa, Y. Takahashi, Spatial adiabatic passage of massive quantum particles, arXiv:1708.01100 [cond-mat.quant-gas]

  14. K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, J. Mompart, Three-level atom optics via the tunneling interaction. Phys. Rev. A 70, 023606 (2014)

    Article  ADS  Google Scholar 

  15. N.V. Vitanov, A.A. Rangelov, B.W. Shore, K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017)

    Article  ADS  Google Scholar 

  16. I. Afek, O. Ambar, Y. Silberberg, High-NOON states by mixing quantum and classical light. Science 328, 879 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. H. Lee, P. Kok, J.P. Dowling, A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A.J. Daley, A. Kantian, H.P. Büchler, P. Zoller, Repulsively bound atom pairs in an optical lattice. Nature 441, 853 (2006)

    Article  ADS  Google Scholar 

  19. G. Mazzarella, S.M. Giampaolo, F. Illuminati, Extended Bose–Hubbard model of interacting bosonic atoms in optical lattices: from superfluidity to density waves. Phys. Rev. A 73, 013625 (2006)

    Article  ADS  Google Scholar 

  20. U. Bissbort, F. Deuretzbacher, W. Hofstetter, Effective multibody-induced tunnelling and interactions in the Bose–Hubbard model of the lowest dressed band of an optical lattice. Phys. Rev. A 86, 023617 (2012)

    Article  ADS  Google Scholar 

  21. D.-S. Lühmann, O. Jürgensen, K. Sengstock, Multi-orbital and density-induced tunnelling of bosons in optical lattices. New J. Phys. 14, 033021 (2012)

    Article  Google Scholar 

  22. M. Maik, P. Hauke, O. Dutta, M. Lewenstein, J. Zakrzewski, Density-dependent tunnelling in the extended Bose–Hubbard model. New J. Phys. 15, 113041 (2013)

    Article  ADS  Google Scholar 

  23. W. Ganczarek, M. Modugno, G. Pettini, J. Zakrzewski, Wannier functions for one-dimensional \(s\)-\(p\) optical superlattices. Phys. Rev. A 90, 033621 (2014)

    Article  ADS  Google Scholar 

  24. M. Kremer, R. Sachdeva, A. Benseny, Th Busch, Interaction-induced effects on Bose–Hubbard parameters. Phys. Rev. A 96, 063611 (2017)

    Article  ADS  Google Scholar 

  25. D.S. Murphy, J.F. McCann, J. Goold, Th Busch, Boson pairs in a one-dimensional split trap. Phys. Rev. A 76, 053616 (2007)

    Article  ADS  Google Scholar 

  26. T. Fogarty, Th Busch, J. Goold, M. Paternostro, Non-locality of two ultracold trapped atoms New. J. Phys. 13, 023016 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Okinawa Institute of Science and Technology Graduate University.

Author information

Authors and Affiliations

  1. Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan

    Albert Benseny, Irina Reshodko & Thomas Busch

Authors
  1. Albert Benseny
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Irina Reshodko
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Thomas Busch
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Albert Benseny.

Additional information

This article belongs to the Topical Collection “Critical Stability of Quantum Few-Body Systems”.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benseny, A., Reshodko, I. & Busch, T. Entanglement in Spatial Adiabatic Processes for Interacting Atoms. Few-Body Syst 59, 48 (2018). https://doi.org/10.1007/s00601-018-1366-y

Download citation

  • Received: 18 December 2017

  • Accepted: 16 March 2018

  • Published: 06 April 2018

  • DOI: https://doi.org/10.1007/s00601-018-1366-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Critical Stability 2017

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.