Advertisement

Few-Body Systems

, 59:37 | Cite as

In-Medium \(K^+\) Electromagnetic Form Factor with a Symmetric Vertex in a Light Front Approach

  • George H. S. Yabusaki
  • J. P. B. C. de Melo
  • Wayne de Paula
  • K. Tsushima
  • T. Frederico
Article
Part of the following topical collections:
  1. Light Cone 2017

Abstract

Using the light-front \(K^ +\)-Meson wave function based on a Bethe-Salpeter amplitude model for the Quark-Antiquark bound state, we study the Electromagnetic Form Factor (EMFF) of the \(K^ +\)-Meson in nuclear medium within the framework of light-front field theory. The \(K^ +\)-Meson model we adopt is well constrained by previous and recent studies to explain its properties in vacuum. The in-medium \(K^ +\)-Meson EMFF is evaluated for the plus-component of the electromagnetic current, \(J^+\), in the Breit frame. In order to consistently incorporate the constituent up and antistrange Quarks of the \(K^ +\)-Meson immersed in symmetric nuclear matter, we use the Quark-Meson coupling model, which has been widely applied to various hadronic and nuclear phenomena in a nuclear medium with success. We predict the in-medium modification of the \(K^ +\)-Meson EMFF in symmetric nuclear matter. It is found that, after a fine tuning of the regulator mass, i.e. \(m_R = 0.600\) GeV, the model is suitable to fit the available experimental data in vacuum within the theoretical uncertainties, and based on this we predict the in-medium modification of the \(K^ +\)-Meson EMFF.

References

  1. 1.
    K. Saito, K. Tsushima, A.W. Thomas, Nucleon and hadron structure changes in the nuclear medium and impact on observables. Prog. Part. Nucl. Phys. 58, 1 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    G.H.S. Yabusaki, I. Ahmed, M .A. Paracha, Melo de J. P. B. C, El-Bennich B, Pseudoscalar mesons with symmetric bound state vertex functions on the light front. Phys. Rev. D 92(3), 034017 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    T. Frederico, G.A. Miller, Null plane phenomenology for the pion decay constant and radius. Phys. Rev. D 45, 4207 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    P. Maris, C.D. Roberts, Pi- and K meson Bethe-Salpeter amplitudes. Phys. Rev. C 56, 3369 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    H.M. Choi, C.R. Ji, Nonvanishing zero modes in the light front current. Phys. Rev. D 58, 071901 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    J.P.C.B. de Melo, H.W.L. Naus, T. Frederico, Pion electromagnetic current in the light cone formalism. Phys. Rev. C 59, 2278 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    H.M. Choi, C.R. Ji, \(K^ +\)-Meson electroweak form-factors in the light front Quark model. Phys. Rev. D 59, 034001 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    F. Gao, L. Chang, Y .X. Liu, C .D. Roberts, P .C. Tandy, Exposing strangeness: projections for \(K^ +\)-Meson electromagnetic form factors. Phys. Rev. D 96(3), 034024 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    A .F. Krutov, S .V. Troitsky, V .E. Troitsky, The \(K\)-Meson form factor and charge radius: linking low-energy data to future Jefferson Laboratory measurements. Eur. Phys. J. C 77(7), 464 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    E.B. Dally et al., Direct measurement of the negative \(K^ +\)-Meson form-factor. Phys. Rev. Lett. 45, 232 (1980)ADSCrossRefGoogle Scholar
  11. 11.
    S.R. Amendolia et al., A measurement of the \(K^ +\)-Meson charge radius. Phys. Lett. B 178, 435 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    K.A. Olive et al., Review of particle physics. Particle data group. Chin. Phys. C 38, 090001 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone. Phys. Rept. 301, 299 (1998)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    P.A.M. Dirac, Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J.P.B.C. de Melo, T. Frederico, E. Pace, G. Salme, Pair term in the electromagnetic current within the front form dynamics: spin-0 case. Nucl. Phys. A 707, 399 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    R.J. Perry, A. Harindranath, K.G. Wilson, Light front Tamm-Dancoff field theory. Phys. Rev. Lett. 65, 2959 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    E.O. da Silva, J.P.B.C. de Melo, B. El-Bennich, V.S. Filho, Pion and \(K^ +\)-Meson elastic form factors in a refined light-front model. Phys. Rev. C 86, 038202 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J .P .B .C. de Melo, K. Tsushima, B. El-Bennich, E. Rojas, T. Frederico, Pion structure in the nuclear medium. Phys. Rev. C 90(3), 035201 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    B.L.G. Bakker, H.M. Choi, C.R. Ji, Regularizing the fermion loop divergencies in the light front Meson currents. Phys. Rev. D 63, 074014 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Tecnológico de Aeronáutica - ITASão José dos CamposBrazil
  2. 2.Laboratório de Física Teórica e Computacional - UCSSão PauloBrazil

Personalised recommendations