Advertisement

Few-Body Systems

, 59:33 | Cite as

On Mass Polarization Effect in Three-Body Nuclear Systems

  • I. Filikhin
  • R. Ya. Kezerashvili
  • V. M. Suslov
  • B. Vlahovic
Article
  • 36 Downloads

Abstract

The mass polarization effect is considered for different three-body nuclear AAB systems having a strongly bound AB and unbound AA subsystems. We employ the Faddeev equations for calculations and the Schrödinger equation for analysis of the contribution of the mass polarization term of the kinetic-energy operator. For a three-boson system the mass polarization effect is determined by the difference of the doubled binding energy of the AB subsystem \(2E_{2}\) and the three-body binding energy \(E_{3}(V_{AA}=0)\) when the interaction between the identical particles is omitted. In this case: \(\left| E_{3}(V_{AA}=0)\right| >2\left| E_{2}\right| \). In the case of a system complicated by isospins(spins), such as the kaonic clusters \( K^{-}K^{-}p\) and \(ppK^{-}\), a similar evaluation is impossible. For these systems it is found that \(\left| E_{3}(V_{AA}=0)\right| <2\left| E_{2}\right| \). A model with an AB potential averaged over spin(isospin) variables transforms the latter case to the first one. The mass polarization effect calculated within this model is essential for the kaonic clusters. In addition we have obtained the relation \(|E_3|\le |2E_2|\) for the binding energy of the kaonic clusters.

Notes

Acknowledgements

This work is supported by the National Science Foundation Grant Supplement to the NSF grant HRD-1345219 and NASA (NNX09AV07A). R. Ya. K. partially supported by MES RK, the Grant 3106/GF4.

References

  1. 1.
    C. Froese Fischer, T. Brage, P. Jönsson, Computational Atomic Structure, An MCHF Approach (IOP, Bristol, 1997)zbMATHGoogle Scholar
  2. 2.
    B. Bransden, C. Joachain, Physics of Atoms and Molecules, 2nd edn. (Pearson Education, Harlow, 2003)Google Scholar
  3. 3.
    D. Hughes, C. Eckart, The effect of the motion of the nucleus on the spectra of Li I and Li II. Phys. Rev. 36, 694–698 (1930)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    S.S. Prasad, A.L. Stewart, Isotope shift in Li and B2+. Proc. Phys. Soc. 87, 159–164 (1966)ADSCrossRefGoogle Scholar
  5. 5.
    N.C. Handy, A.M. Lee, The adiabatic approximation. Chem. Phys. Lett. 252, 425 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    N. Yamanaka, Calculation of mass polarization for the and states in Li-like ions. J. Phys. B At. Mol. Opt. Phys. 32, 1597–1605 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    F. Rolim, J.P. Braga, J.R. Mohallem, Unified description of chemical bonding in H2 isotopomers, including Ps2, \(\mu \)2 and bi-excitons. Chem. Phys. Lett. 322, 139 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    T. Koga, H. Matsuyama, Nuclear mass corrections for atoms and ions. Chem. Phys. Lett. 366, 601–605 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    G.W.F. Drake, M.M. Cassar, R. Nistor, Ground-state energies for helium, \(\text{ H }^{-}\), and \(\text{ Ps }^{-}\). Phys. Rev. A 65, 054501 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    T. Koga, H. Matsuyama, Nuclear mass corrections for atoms and ions. Chem. Phys. Lett. 366, 601 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    A.K. Bhatia, R.J. Drachman, The mass polarization effect in He-like ions: first and second order. J. Phys. B At. Mol. Opt. Phys. 36, 1957 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    H. Nakashima, H. Nakatsuji, Solving the electron and electron-nuclear Schrdinger equations for the excited states of helium atom with the free iterative-complement-interaction method. J. Chem. Phys. 128, 154107–7 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    J.R. Mohallem, L.G. Diniz, A.S. Dutra, Separation of motions of atomic cores and valence electrons in molecules. Chem. Phys. Lett. 501, 575 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Mohallem, F. Rolim, C.P. Goncalves, A molecular model for positron complexes: long-range effects on 2\(\gamma \) pair-annihilation rates. J. Phys. B At. Mol. Opt. Phys. 37, 1045 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318-6 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    D.K. Zhang, D.W. Kidd, K. Varga, Excited biexcitons in transition metal dichalcogenides. Nano Lett. 15, 70027005 (2015)ADSGoogle Scholar
  17. 17.
    E. Courtade et al., Charged excitons in monolayer \(\text{ WSe }_{2}\): experiment and theory. arXiv:1705.02110
  18. 18.
    I.N. Filikhin, A. Gal, Light \(\varLambda \varLambda \) hypernuclei and the onset of stability for \(\varLambda \varXi \) hypernuclei. Phys. Rev. C 65, 041001(R)–4 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Four-body cluster structure of \(A=7-10\) double-hypernuclei. Phys. Rev. C 66, 024007–13 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    A. Dote, Double-pole structure on a prototype of kaonic nuclei \(K^{-}pp\). In: Presented at HYP2015, Tohoku University Centennial Hall, 7–11 September (2015)Google Scholar
  21. 21.
    A. Dote, T. Inoue, T. Myo, Application of a coupled-channel complex scaling method with Feshbach projection to the \(K^-pp\) system. Prog. Theor. Exp. Phys.  https://doi.org/10.1093/ptep/ptv039
  22. 22.
    J.-L. Basdevant, A. Martin, J.-M. Richard, T.T. Wu, Optimized lower bounds in the three-body problem. Nucl. Phys. B 393, 111–125 (1993)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    L.D. Faddeev, S.P. Merkuriev, Quantum Scattering Theory for Several Particle Systems (Kluwer Academic, Dordrecht, 1993), p. 398CrossRefzbMATHGoogle Scholar
  24. 24.
    H.P. Noyes, H. Fiedeldey, in Three-Particle Scattering in Quantum Mechanics, ed. by J. Gillespie, J. Nuttall (W. A. Benjamin, New York, 1968), p. 195Google Scholar
  25. 25.
    A.A. Kvitsinsky, Yu.A. Kuperin, S.P. Merkuriev, A.K. Motovilov, S.L. Yakovlev, N-body quantum problem in configuration space. Fiz. Elem. Chastits At. Yadra, 17, 267–317 (1986) (in Russian). http://www1.jinr.ru/Archive/Pepan/1986-v17/v-17-2.htm
  26. 26.
    I.N. Filikhin, A. Gal, V.M. Suslov, Faddeev calculations for the \(A=5,6\varLambda \varLambda \)-hypernuclei. Phys. Rev. C 68, 024002–8 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    I. Filikhin, A. Gal, V.M. Suslov, Cluster models of \(_{\varLambda \varLambda }^6\)He and \(_{\varLambda }^9\)Be hypernuclei. Nucl. Phys. A 743, 194–207 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    I.N. Filikhin, V.M. Suslov, B. Vlahovic, A new prediction for the binding energy of the \(^{7}\varLambda \)He hypernucleus. J. Phys. G: Nucl. Part. Phys. 31, 389–400 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    R.A. Malfliet, J.A. Tjon, Solution of the Faddeev equations for the triton problem using local two-particle interactions. Nucl. Phys. A 127, 161–168 (1969)ADSCrossRefGoogle Scholar
  30. 30.
    J.L. Friar, B.F. Gibson, G. Berthold, W. Glöckle, Th Cornelius, H. Witala, J. Haidenbauer, Y. Koike, G.L. Payne, J.A. Tjon, W.M. Kloet, Benchmark solutions for a model three-nucleon scattering problem. Phys. Rev. C 42, 1838–1840 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    I.N. Filikhin, V.M. Suslov, B. Vlahovic, Charge symmetry breaking effect for \(^3\)H and \(^3\)He within s-wave approach. Int. J. Mod. Phys. E 25, 1650042–9 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    R.Ya. Kezerashvili, S.M. Tsiklauri, I. Filikhin, V.M. Suslov, B. Vlahovic, Three-body calculations for the \(K^-pp\) system within potential models. J. Phys. G Nucl. Part. Phys. 43, 065104–065118 (2016). arXiv:1508.07638 ADSCrossRefGoogle Scholar
  33. 33.
    T. Yamazaki, Y. Akaishi, Basic \({\bar{K}}\) nuclear cluster, \(K^-pp\), and its enhanced formation in the \(p+p\rightarrow K^++X\) reaction. Phys. Rev. C 76, 045201–16 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    T. Hyodo, W. Weise, Effective \({\bar{K}}N\) interaction based on chiral SU(3) dynamics. Phys. Rev. C 77, 035204–14 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    D. Jido, Y. Kanada-Enyo, \(K{\bar{K}}N\) molecule state with \(I=1/2\) and \(J^P=1/2^+\) studied with a three-body calculation. Phys. Rev. C 78, 035203–10 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Kanada-Enyo, D. Jido, \({\bar{K}}{\bar{K}}N\) molecular state in a three-body calculation. Phys. Rev. C 78, 025212-10 (2008)ADSGoogle Scholar
  37. 37.
    M. Bayar, J. Yamagata-Sekihara, E. Oset, \({\bar{K}}NN\) system with chiral dynamics. Phys. Rev. C 84, 015209–9 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    I. Filikhin, V.M. Suslov, B. Vlahovic, An \(\alpha \)-cluster model for \(_\varLambda ^9\)Be spectroscopy. Phys. At. Nucl. 76, 355–364 (2013)CrossRefGoogle Scholar
  39. 39.
    Y.C. Tang, R.C. Herndon, \(\varLambda \varLambda \) Potential from analysis of \(_{\varLambda \varLambda }\text{ Be }^{10}\). Phys. Rev. 138, 637–643 (1965)ADSCrossRefGoogle Scholar
  40. 40.
    B.F. Gibson, A. Goldberg, M.S. Weiss, Effects of \(\varLambda -\varSigma \) coupling in \(^{4}\varLambda \)H, \(^{4}\varLambda \)He, and \(^{4}\varLambda \)He. Phys. Rev. C 6, 741–748 (1972)ADSCrossRefGoogle Scholar
  41. 41.
    S. Maeda, E.W. Schmid, in Few-Body Problems in Physics, vol. II, ed. by B. Zeitnitz (Elsevier, Amsterdam, 1984), p. 379Google Scholar
  42. 42.
    K.S. Myint, S. Shinmura, Y. Akaishi, \(\varLambda \varLambda -{\varXi } N\) coupling effects in light hypernuclei. Eur. Phys. J. A 16, 21–26 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Kurihara, Y. Akaishi, H. Tanaka, Central repulsion of \(\varLambda -\alpha \) interaction with hard-core \(\varLambda -N\) potential. Prog. Theor. Phys. 71, 561–568 (1984)ADSCrossRefGoogle Scholar
  44. 44.
    K.A. Olive et al., Particle data group. Review of particle physics. Chin. Phys. C 38, 090001 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    R.Ya. Kezerashvili, S.M. Tsiklauri, I.N. Filikhin, V.M. Suslov, B. Vlahovic, \({\bar{K}}pp\) and \({\bar{K}}{\bar{K}}p\) Clusters. EPJ Web Conf. 113, 07005-4 (2016)Google Scholar
  46. 46.
    J.L. Friar, B.F. Gibson, G.L. Payne, Configuration space Faddeev calculations. V. Variational bounds. Phys. Rev. C 24, 2279–2289 (1981)ADSCrossRefGoogle Scholar
  47. 47.
    A. Dote, T. Hyodo, W. Weise, Variational calculation of the \(ppK^-\) system based on chiral SU(3) dynamics. Phys. Rev. C 79, 014003–16 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    A. Dote, T. Inoue, T. Myo, Fully coupled-channels complex scaling method for the \(K^{-}pp\) system. Phys. Rev. C 95, 062201 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Ichikawa et al., Observation of the \(K^-pp\)-like structure in the \(d(\pi ^+, K^+)\) reaction at 1.69 GeV. Prog. Theor. Exp. Phys. 2015, 021D018 (2015)CrossRefGoogle Scholar
  50. 50.
    A. Gal, MESON2016–concluding remarks. EPJ Web Conf. 130, 01030–01038 (2016). arXiv:1609.04570v2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • I. Filikhin
    • 1
  • R. Ya. Kezerashvili
    • 2
    • 3
  • V. M. Suslov
    • 1
  • B. Vlahovic
    • 1
  1. 1.North Carolina Central UniversityDurhamUSA
  2. 2.Physics Department, New York City College of TechnologyThe City University of New YorkBrooklynUSA
  3. 3.The Graduate School and University CenterThe City University of New YorkNew YorkUSA

Personalised recommendations