Few-Body Systems

, 59:22 | Cite as

Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas

  • R. E. Barfknecht
  • A. Foerster
  • N. T. Zinner
Part of the following topical collections:
  1. Critical Stability 2017


We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.



The authors thank Artem G. Volosniev for feedback on the results. The following agencies—Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Danish Council for Independent Research DFF Natural Sciences and the DFF Sapere Aude program—are gratefully acknowledged for financial support.


  1. 1.
    T. Kinoshita, T. Wenger, D.S. Weiss, Observation of a one-dimensional Tonks–Girardeau gas. Science 305(5687), 1125–1128 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    B. Paredes, A. Widera, V. Murg, O. Mandel, S. Folling, I. Cirac, G.V. Shlyapnikov, T.W. Hansch, I. Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    T. Kinoshita, T. Wenger, D.S. Weiss, A quantum Newton’s cradle. Nature 440, 900–903 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    G. Zürn, F. Serwane, T. Lompe, A.N. Wenz, M.G. Ries, J.E. Bohn, S. Jochim, Fermionization of two distinguishable fermions. Phys. Rev. Lett. 108, 075303 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, From few to many: observing the formation of a Fermi sea one atom at a time. Science 342(6157), 457–460 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    F. Deuretzbacher, D. Becker, J. Bjerlin, S.M. Reimann, L. Santos, Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases. Phys. Rev. A 90, 013611 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    A.G. Volosniev, D.V. Fedorov, A.S. Jensen, M. Valiente, N.T. Zinner, Strongly interacting confined quantum systems in one dimension. Nat. Commun. 5, 5300 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    L. Yang, L. Guan, H. Pu, Strongly interacting quantum gases in one-dimensional traps. Phys. Rev. A 91, 043634 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A.G. Volosniev, D. Petrosyan, M. Valiente, D.V. Fedorov, A.S. Jensen, N.T. Zinner, Engineering the dynamics of effective spin-chain models for strongly interacting atomic gases. Phys. Rev. A 91, 023620 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    L. Yang, X. Guan, X. Cui, Engineering quantum magnetism in one-dimensional trapped Fermi gases with \(p\)-wave interactions. Phys. Rev. A 93, 051605 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    F. Deuretzbacher, D. Becker, L. Santos, Momentum distributions and numerical methods for strongly interacting one-dimensional spinor gases. Phys. Rev. A 94, 023606 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    R.E. Barfknecht, A. Foerster, N.T. Zinner, Dynamical realization of magnetic states in a strongly interacting Bose mixture. Phys. Rev. A 95, 023612 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    A. Dehkharghani, A. Volosniev, J. Lindgren, J. Rotureau, C. Forssén, D. Fedorov, A. Jensen, N. Zinner, Quantum magnetism in strongly interacting one-dimensional spinor Bose systems. Sci. Rep. 5, 10675 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S.M. Reimann, L. Santos, T. Lompe, S. Jochim, Antiferromagnetic Heisenberg spin chain of a few cold atoms in a one-dimensional trap. Phys. Rev. Lett. 115, 215301 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    L. Yang, X. Cui, Effective spin-chain model for strongly interacting one-dimensional atomic gases with an arbitrary spin. Phys. Rev. A 93, 013617 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    N. Loft, L. Kristensen, A. Thomsen, A. Volosniev, N. Zinner, CONANthe cruncher of local exchange coefficients for strongly interacting confined systems in one dimension. Comput. Phys. Commun. 209, 171–182 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    J. Decamp, J. Jünemann, M. Albert, M. Rizzi, A. Minguzzi, P. Vignolo, High-momentum tails as magnetic-structure probes for strongly correlated \(\text{ SU }(\kappa )\) fermionic mixtures in one-dimensional traps. Phys. Rev. A 94, 053614 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    X.-W. Guan, M.T. Batchelor, M. Takahashi, Ferromagnetic behavior in the strongly interacting two-component Bose gas. Phys. Rev. A 76, 043617 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    M.A. Garcia-March, B. Juliá-Díaz, G.E. Astrakharchik, T. Busch, J. Boronat, A. Polls, Sharp crossover from composite fermionization to phase separation in microscopic mixtures of ultracold bosons. Phys. Rev. A 88, 063604 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    M.A. Garca-March, B. Juli-Daz, G.E. Astrakharchik, T. Busch, J. Boronat, A. Polls, Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures. New J. Phys. 16(10), 103004 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M.A. García-March, B. Juliá-Díaz, G.E. Astrakharchik, J. Boronat, A. Polls, Distinguishability, degeneracy, and correlations in three harmonically trapped bosons in one dimension. Phys. Rev. A 90, 063605 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    F. Deuretzbacher, K. Fredenhagen, D. Becker, K. Bongs, K. Sengstock, D. Pfannkuche, Exact solution of strongly interacting quasi-one-dimensional spinor Bose gases. Phys. Rev. Lett. 100, 160405 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1(6), 516–523 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    F. Deuretzbacher, D. Becker, J. Bjerlin, S.M. Reimann, L. Santos, Spin-chain model for strongly interacting one-dimensional Bose–Fermi mixtures. Phys. Rev. A 95, 043630 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    N.J.S. Loft, O.V. Marchukov, D. Petrosyan, N.T. Zinner, Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer. New J. Phys. 18(4), 045011 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • R. E. Barfknecht
    • 1
    • 2
  • A. Foerster
    • 2
  • N. T. Zinner
    • 1
    • 3
  1. 1.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  2. 2.Instituto de Física da UFRGSPorto AlegreBrazil
  3. 3.Aarhus Institute of Advanced StudiesAarhus UniversityAarhus CDenmark

Personalised recommendations