Skip to main content
Log in

Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra and other Advances in Light-Front QCD

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining \(q \bar{q}\) potential \(\kappa ^4 \zeta ^2\), where \(\zeta ^2\) is the light-front radial variable related in momentum space to the \(q \bar{q}\) invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS\(_5\), the space of isometries of the conformal group—if one modifies the action of AdS\(_5\) by the dilaton \(e^{\kappa ^2 z^2}\) in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale \(\kappa \) underlying confinement and hadron masses can be connected to the parameter \(\varLambda _{\overline{MS}}\) in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling \(\alpha _s(Q^2)\) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale \(Q_0\) which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. de Alfaro, S. Fubini, G. Furlan, Nuovo Cim. A 34, 569 (1976)

    Article  ADS  Google Scholar 

  2. S.J. Brodsky, G.F. de Téramond, H.G. Dosch, Phys. Lett. B 729, 3 (2014). https://doi.org/10.1016/j.physletb.2013.12.044. [arXiv:1302.4105 [hep-th]]

    Article  ADS  Google Scholar 

  3. G.F. de Téramond, S.J. Brodsky, Phys. Rev. Lett. 102, 081601 (2009). https://doi.org/10.1103/PhysRevLett.102.081601. [arXiv:0809.4899 [hep-ph]]

    Article  ADS  Google Scholar 

  4. G.F. de Téramond, H.G. Dosch, S.J. Brodsky, Phys. Rev. D 87(7), 075005 (2013). https://doi.org/10.1103/PhysRevD.87.075005. [arXiv:1301.1651 [hep-ph]]

    Article  ADS  Google Scholar 

  5. G.F. de Téramond, S.J. Brodsky, Nucl. Phys. Proc. Suppl. 199, 89 (2010). https://doi.org/10.1016/j.nuclphysbps.2010.02.010. [arXiv:0909.3900 [hep-ph]]

    Article  ADS  Google Scholar 

  6. S.J. Brodsky, F. Guy de Tramond, Chin. Phys. C 34(9), 1229 (2010). https://doi.org/10.1088/1674-1137/34/9/015. [arXiv:1001.1978 [hep-ph]]

    Article  Google Scholar 

  7. G.F. de Téramond, S.J. Brodsky, H.G. Dosch, EPJ Web Conf. 73, 01014 (2014). https://doi.org/10.1051/epjconf/20147301014. [arXiv:1401.5531 [hep-ph]]

    Article  Google Scholar 

  8. S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015). https://doi.org/10.1016/j.physrep.2015.05.001. [arXiv:1407.8131 [hep-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  9. S.J. Brodsky, A. Deur, G.F. de Téramond, H.G. Dosch, Int. J. Mod. Phys. Conf. Ser. 39, 1560081 (2015). https://doi.org/10.1142/S2010194515600812. [arXiv:1510.01011 [hep-ph]]

    Article  Google Scholar 

  10. A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Phys. Rev. Lett. 104, 112002 (2010). https://doi.org/10.1103/PhysRevLett.104.112002. [arXiv:0911.4742 [hep-ph]]

    Article  ADS  Google Scholar 

  11. S.J. Brodsky, F.G. Cao, G.F. de Téramond, Phys. Rev. D 84, 075012 (2011). https://doi.org/10.1103/PhysRevD.84.075012. [arXiv:1105.3999 [hep-ph]]

    Article  ADS  Google Scholar 

  12. J.R. Forshaw, R. Sandapen, Phys. Rev. Lett. 109, 081601 (2012). https://doi.org/10.1103/PhysRevLett.109.081601. [arXiv:1203.6088 [hep-ph]]

    Article  ADS  Google Scholar 

  13. J.P. Vary, X. Zhao, A. Ilderton, H. Honkanen, P. Maris, S.J. Brodsky, Nucl. Phys. Proc. Suppl. 251–252, 10 (2014). https://doi.org/10.1016/j.nuclphysbps.2014.04.002. [arXiv:1406.1838 [nucl-th]]

    Article  Google Scholar 

  14. S.J. Brodsky et al. arXiv:1502.05728 [hep-ph]

  15. R. Haag, J.T. Lopuszanski, M. Sohnius, Nucl. Phys. B 88, 257 (1975). https://doi.org/10.1016/0550-3213(75)90279-5

    Article  ADS  Google Scholar 

  16. S. Fubini, E. Rabinovici, Nucl. Phys. B 245, 17 (1984). https://doi.org/10.1016/0550-3213(84)90422-X

    Article  ADS  Google Scholar 

  17. S.J. Brodsky, S.D. Drell, Phys. Rev. D 22, 2236 (1980). https://doi.org/10.1103/PhysRevD.22.2236

    Article  ADS  Google Scholar 

  18. S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530, 99 (2002). https://doi.org/10.1016/S0370-2693(02)01320-5. [arXiv:hep-ph/0201296]

    Article  ADS  Google Scholar 

  19. G.F. de Téramond, H.G. Dosch, S.J. Brodsky, Phys. Rev. D 91(4), 045040 (2015). https://doi.org/10.1103/PhysRevD.91.045040. [arXiv:1411.5243 [hep-ph]]

    Article  ADS  Google Scholar 

  20. H.G. Dosch, G.F. de Téramond, S.J. Brodsky, Phys. Rev. D 91(8), 085016 (2015). https://doi.org/10.1103/PhysRevD.91.085016. [arXiv:1501.00959 [hep-th]]

    Article  ADS  Google Scholar 

  21. H.G. Dosch, G.F. de Téramond, S.J. Brodsky, Phys. Rev. D 92(7), 074010 (2015). https://doi.org/10.1103/PhysRevD.92.074010. [arXiv:1504.05112 [hep-ph]]

    Article  ADS  Google Scholar 

  22. T. Liu, B.Q. Ma, Phys. Rev. D 92(9), 096003 (2015). https://doi.org/10.1103/PhysRevD.92.096003. [arXiv:1510.07783 [hep-ph]]

    Article  ADS  Google Scholar 

  23. S.J. Brodsky, R.F. Lebed, Phys. Rev. D 91, 114025 (2015). https://doi.org/10.1103/PhysRevD.91.114025. [arXiv:1505.00803 [hep-ph]]

    Article  ADS  Google Scholar 

  24. R.S. Sufian, G.F. de Téramond, S.J. Brodsky, A. Deur, H.G. Dosch, Phys. Rev. D 95(1), 014011 (2017). https://doi.org/10.1103/PhysRevD.95.014011. [arXiv:1609.06688 [hep-ph]]

    Article  ADS  Google Scholar 

  25. P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949). https://doi.org/10.1103/RevModPhys.21.392

    Article  ADS  Google Scholar 

  26. S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299 (1998). https://doi.org/10.1016/S0370-1573(97)00089-6. [arXiv:hep-ph/9705477]

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Terrell, Phys. Rev. 116, 1041 (1959). https://doi.org/10.1103/PhysRev.116.1041

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Penrose, Proc. Camb. Philos. Soc. 55, 137 (1959). https://doi.org/10.1017/S0305004100033776

    Article  ADS  Google Scholar 

  29. G. Grunberg, Phys. Lett. 95B, 70 (1980) Erratum: [Phys. Lett. 110B, 501 (1982)]. https://doi.org/10.1016/0370-2693(80)90402-5

  30. S.J. Brodsky, H.J. Lu, Phys. Rev. D 51, 3652 (1995). https://doi.org/10.1103/PhysRevD.51.3652. [arXiv:hep-ph/9405218]

    Article  ADS  Google Scholar 

  31. S.J. Brodsky, G.F. de Téramond, A. Deur, Phys. Rev. D 81, 096010 (2010). https://doi.org/10.1103/PhysRevD.81.096010. [arXiv:1002.3948 [hep-ph]]

    Article  ADS  Google Scholar 

  32. A. Deur, V. Burkert, J.P. Chen, W. Korsch, Phys. Lett. B 650, 244 (2007). https://doi.org/10.1016/j.physletb.2007.05.015. [arXiv:hep-ph/0509113]

    Article  ADS  Google Scholar 

  33. A. Deur, S.J. Brodsky, G.F. de Téramond, Phys. Lett. B 750, 528 (2015). https://doi.org/10.1016/j.physletb.2015.09.063. [arXiv:1409.5488 [hep-ph]]

    Article  ADS  Google Scholar 

  34. S.J. Brodsky, G.F. de Téramond, A. Deur, H.G. Dosch, Few Body Syst. 56(6–9), 621 (2015). https://doi.org/10.1007/s00601-015-0964-1. [arXiv:1410.0425 [hep-ph]]

    Article  ADS  Google Scholar 

  35. D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodriguez-Quintero, Phys. Rev. D 96(5), 054026 (2017). https://doi.org/10.1103/PhysRevD.96.054026. [arXiv:1612.04835 [nucl-th]]

    Article  ADS  Google Scholar 

  36. K.A. Olive et al., [Particle Data Group] Chin. Phys. C 38, 090001 (2014). https://doi.org/10.1088/1674-1137/38/9/090001

  37. A. Zee, Quantum field theory in a nutshell, 2nd edn. (Princeton University Press, Princeton, 2010), p. 576

  38. M. Mojaza, S.J. Brodsky, X.G. Wu, Phys. Rev. Lett. 110, 192001 (2013). https://doi.org/10.1103/PhysRevLett.110.192001. [arXiv:1212.0049 [hep-ph]]

    Article  ADS  Google Scholar 

  39. C. Cruz-Santiago, P. Kotko, A.M. Staśto, Prog. Part. Nucl. Phys. 85, 82 (2015). https://doi.org/10.1016/j.ppnp.2015.07.002

    Article  ADS  Google Scholar 

  40. K.Y.J. Chiu, S.J. Brodsky, Phys. Rev. D 95(6), 065035 (2017). https://doi.org/10.1103/PhysRevD.95.065035. [arXiv:1702.01127 [hep-th]]

    Article  ADS  Google Scholar 

  41. S.J. Brodsky, R. Roskies, R. Suaya, Phys. Rev. D 8, 4574 (1973). https://doi.org/10.1103/PhysRevD.8.4574

    Article  ADS  Google Scholar 

  42. S.J. Brodsky, G.F. de Téramond, in Proceedings of the 18th International Conference on Particles and Nuclei (PANIC 08) 9–14 Nov 2008. Eilat, Israel (2009). CNUM: C08-11-09. arXiv:0901.0770 [hep-ph]

  43. S.J. Brodsky, R.F. Lebed, Phys. Rev. Lett. 102, 213401 (2009). https://doi.org/10.1103/PhysRevLett.102.213401. [arXiv:0904.2225 [hep-ph]]

    Article  ADS  Google Scholar 

  44. A. Banburski, P. Schuster, Phys. Rev. D 86, 093007 (2012). https://doi.org/10.1103/PhysRevD.86.093007. [arXiv:1206.3961 [hep-ph]]

    Article  ADS  Google Scholar 

  45. S. Liuti, A. Rajan, A. Courtoy, G.R. Goldstein, J.O. Gonzalez Hernandez, Int. J. Mod. Phys. Conf. Ser. 25, 1460009 (2014). https://doi.org/10.1142/S201019451460009X. [arXiv:1309.7029 [hep-ph]]

    Article  Google Scholar 

  46. C. Mondal, D. Chakrabarti, Eur. Phys. J. C 75(6), 261 (2015). https://doi.org/10.1140/epjc/s10052-015-3486-6. [arXiv:1501.05489 [hep-ph]]

    Article  ADS  Google Scholar 

  47. C. Lorce, B. Pasquini, M. Vanderhaeghen, JHEP 1105, 041 (2011). https://doi.org/10.1007/JHEP05(2011)041. [arXiv:1102.4704 [hep-ph]]

    Article  ADS  Google Scholar 

  48. S.J. Brodsky, A.I.P. Conf. Proc. 1105, 315 (2009). https://doi.org/10.1063/1.3122202. [arXiv:0811.0875 [hep-ph]]

  49. S.J. Brodsky, Nucl. Phys. A 827, 327C (2009). https://doi.org/10.1016/j.nuclphysa.2009.05.068. [arXiv:0901.0781 [hep-ph]]

    Article  ADS  Google Scholar 

  50. S.J. Brodsky, P. Hoyer, N. Marchal, S. Peigne, F. Sannino, Phys. Rev. D 65, 114025 (2002). https://doi.org/10.1103/PhysRevD.65.114025. [arXiv:hep-ph/0104291]

    Article  ADS  Google Scholar 

  51. S.J. Brodsky, B. Pasquini, B.W. Xiao, F. Yuan, Phys. Lett. B 687, 327 (2010). https://doi.org/10.1016/j.physletb.2010.03.049. [arXiv:1001.1163 [hep-ph]]

    Article  ADS  Google Scholar 

  52. S.J. Brodsky, D.S. Hwang, Y.V. Kovchegov, I. Schmidt, M.D. Sievert, Phys. Rev. D 88(1), 014032 (2013). https://doi.org/10.1103/PhysRevD.88.014032. [arXiv:1304.5237 [hep-ph]]

    Article  ADS  Google Scholar 

  53. S.J. Brodsky, H.J. Lu, Phys. Rev. Lett. 64, 1342 (1990). https://doi.org/10.1103/PhysRevLett.64.1342

    Article  ADS  Google Scholar 

  54. S.J. Brodsky, I. Schmidt, J.J. Yang, Phys. Rev. D 70, 116003 (2004). https://doi.org/10.1103/PhysRevD.70.116003. [arXiv:hep-ph/0409279]

    Article  ADS  Google Scholar 

  55. I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens, Phys. Rev. D 77, 054013 (2008). https://doi.org/10.1103/PhysRevD.77.054013. [arXiv:0710.4897 [hep-ph]]

    Article  ADS  Google Scholar 

  56. A. Zee, Mod. Phys. Lett. A 23, 1336 (2008). https://doi.org/10.1142/S0217732308027709

    Article  ADS  Google Scholar 

  57. M.A. Shifman, World Sci. Lect. Notes Phys. 62, 1 (1999)

    Article  Google Scholar 

  58. A. Casher, L. Susskind, Phys. Rev. D 9, 436 (1974). https://doi.org/10.1103/PhysRevD.9.436

    Article  ADS  Google Scholar 

  59. S.J. Brodsky, R. Shrock, Proc. Natl. Acad. Sci. 108, 45 (2011). https://doi.org/10.1073/pnas.1010113107. [arXiv:0905.1151 [hep-th]]

    Article  ADS  Google Scholar 

  60. S.J. Brodsky, C.D. Roberts, R. Shrock, P.C. Tandy, Phys. Rev. C 82, 022201 (2010). https://doi.org/10.1103/PhysRevC.82.022201. [arXiv:1005.4610 [nucl-th]]

    Article  ADS  Google Scholar 

  61. P.P. Srivastava, S.J. Brodsky, Phys. Rev. D 66, 045019 (2002). https://doi.org/10.1103/PhysRevD.66.045019. [arXiv:hep-ph/0202141]

    Article  ADS  Google Scholar 

  62. E.P. Verlinde, SciPost Phys. 2(3), 016 (2017). https://doi.org/10.21468/SciPostPhys.2.3.016. [arXiv:1611.02269 [hep-th]]

    Article  Google Scholar 

  63. S.J. Brodsky, M. Diehl, D.S. Hwang, Nucl. Phys. B 596, 99 (2001). https://doi.org/10.1016/S0550-3213(00)00695-7. [arXiv:hep-ph/0009254]

    Article  ADS  Google Scholar 

  64. J.F. Gunion, S.J. Brodsky, R. Blankenbecler, Phys. Rev. D 8, 287 (1973). https://doi.org/10.1103/PhysRevD.8.287

    Article  ADS  Google Scholar 

  65. S.J. Brodsky, C.R. Ji, G.P. Lepage, Phys. Rev. Lett. 51, 83 (1983). https://doi.org/10.1103/PhysRevLett.51.83

    Article  ADS  Google Scholar 

  66. S.J. Brodsky, A. Sickles, Phys. Lett. B 668, 111 (2008). https://doi.org/10.1016/j.physletb.2008.07.108. [arXiv:0804.4608 [hep-ph]]

    Article  ADS  Google Scholar 

  67. F. Arleo, S.J. Brodsky, D.S. Hwang, A.M. Sickles, Phys. Rev. Lett. 105, 062002 (2010). https://doi.org/10.1103/PhysRevLett.105.062002. [arXiv:0911.4604 [hep-ph]]

    Article  ADS  Google Scholar 

  68. J.W. Cronin, H.J. Frisch, M.J. Shochet, J.P. Boymond, R. Mermod, P.A. Piroue, R.L. Sumner, Phys. Rev. D 11, 3105 (1975). https://doi.org/10.1103/PhysRevD.11.3105

    Article  ADS  Google Scholar 

  69. D.W. Sivers, S.J. Brodsky, R. Blankenbecler, Phys. Rep. 23, 1 (1976). https://doi.org/10.1016/0370-1573(76)90015-6

    Article  ADS  Google Scholar 

  70. S.J. Brodsky, Nucl. Part. Phys. Proc. 258–259, 23 (2015). https://doi.org/10.1016/j.nuclphysbps.2015.01.007. [arXiv:1410.0404 [hep-ph]]

    Article  Google Scholar 

  71. J.D. Bjorken, S.J. Brodsky, A.S. Goldhaber, Phys. Lett. B 726, 344 (2013). https://doi.org/10.1016/j.physletb.2013.08.066. [arXiv:1308.1435 [hep-ph]]

    Article  ADS  Google Scholar 

  72. D. Ashery, Nucl. Phys. Proc. Suppl. 90, 67 (2000). https://doi.org/10.1016/S0920-5632(00)00875-6

    Article  ADS  Google Scholar 

  73. D. Ashery, Nucl. Phys. Proc. Suppl. 108, 321 (2002). https://doi.org/10.1016/S0920-5632(02)01354-3. [arXiv:hep-ex/0008036]

    Article  ADS  Google Scholar 

  74. P. Wiecki, Y. Li, X. Zhao, P. Maris, J.P. Vary, Phys. Rev. D 91(10), 105009 (2015). https://doi.org/10.1103/PhysRevD.91.105009. [arXiv:1404.6234 [nucl-th]]

    Article  ADS  Google Scholar 

  75. M. Mojaza, S.J. Brodsky, X.G. Wu, Phys. Rev. Lett. 110, 192001 (2013). https://doi.org/10.1103/PhysRevLett.110.192001 [arXiv:1212.0049 [hep-ph]]

Download references

Acknowledgements

Presented at Light-Cone 2017, Frontiers in Light Front Hadron Physics: Theory and Experiment September 18–22, 2017, Mumbai, Maharashtra, India. I thank Prof. Anuradha Misra and her colleagues for organizing an outstanding conference at the University of Mumbai. The results presented here are based on collaborations and discussions with Kelly Chiu, Alexandre Deur, Guy de Téramond, Guenter Dosch, Marina Nielsen, Fred Goldhaber, Paul Hoyer, Dae Sung Hwang, Rich Lebed, Simonetta Liuti, Cedric Lorce, Matin Mojaza, Michael Peskin, Craig Roberts, Ivan Schmidt, and Xing-Gang Wu. This research was supported by the Department of Energy, contract DE–AC02–76SF00515. SLAC-PUB-17202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley J. Brodsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodsky, S.J. Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra and other Advances in Light-Front QCD. Few-Body Syst 59, 25 (2018). https://doi.org/10.1007/s00601-018-1342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1342-6

Navigation