Few-Body Systems

, 59:29 | Cite as

Multistrange Meson-Baryon Dynamics and Resonance Generation

  • K. P. Khemchandani
  • A. Martínez Torres
  • A. Hosaka
  • H. Nagahiro
  • F. S. Navarra
  • M. Nielsen
Part of the following topical collections:
  1. Light Cone 2017


In this talk I review our recent studies on meson-baryon systems with strangeness \(-\,1\) and \(-\,2\). The motivation of our works is to find resonances generated as a consequence of coupled channel meson-baryon interactions. The coupled channels are all meson-baryon systems formed by combining a pseudoscalar or a vector meson with an octet baryon such that the system has the strange quantum number equal to \(-\,1\) or \(-\,2\). The lowest order meson-baryon interaction amplitudes are obtained from Lagrangians based on the chiral and the hidden local symmetries related to the vector mesons working as the gauge bosons. These lowest order amplitudes are used as an input to solve the Bethe–Salpeter equation and a search for poles is made in the resulting amplitudes, in the complex plane. In case of systems with strangeness \(-\,1\), we find evidence for the existence of some hyperons such as: \(\varLambda (2000)\), \(\varSigma (1750)\), \(\varSigma (1940)\), \(\varSigma (2000)\). More recently, in the study of strangeness \(-\,2\) systems we have found two narrow resonances which can be related to \(\varXi (1690)\) and \(\varXi (2120)\). In this latter work, we have obtained the lowest order amplitudes relativistically as well as in the nonrelativistic approximation to solve the scattering equations. We find that the existence of the poles in the complex plane does not get affected by the computation of the scattering equation with the lowest order amplitudes obtained in the nonrelativistic approximation.


  1. 1.
    A. Ramos, E. Oset, C. Bennhold, D. Jido, J.A. Oller, U.G. Meissner, Dynamical generation of hyperon resonances. Nucl. Phys. A 754, 202 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    M.F.M. Lutz, J. Hofmann, Dynamically generated hidden-charm baryon resonances. Int. J. Mod. Phys. A 21, 5496 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    S. Sarkar, B.X. Sun, E. Oset, M.J. Vicente Vacas, Dynamically generated resonances from the vector octet-baryon decuplet interaction. Eur. Phys. J. A 44, 431 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    E. Oset et al., Dynamically generated resonances. Prog. Theor. Phys. Suppl. 186, 124 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    B.-X. Sun, Y.-W. Wang, Vector meson-baryon octet interaction and resonances generated dynamically. Int. J. Mod. Phys. Conf. Ser. 29, 1460211 (2014)CrossRefGoogle Scholar
  6. 6.
    E. Oset, A. Ramos, Dynamically generated resonances from the vector octet-baryon octet interaction. Eur. Phys. J. A 44, 445 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    T. Hyodo, D. Jido, A. Hosaka, Compositeness of dynamically generated states in a chiral unitary approach. Phys. Rev. C 85, 015201 (2012)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    K.P. Khemchandani, A. Martinez Torres, E. Oset, The N*(1710) as a resonance in the pi pi N system. Eur. Phys. J. A 37, 233–243 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    A. Martinez Torres, K.P. Khemchandani, E. Oset, Three body resonances in two meson-one baryon systems. Phys. Rev. C 77, 042203 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    A. Martinez Torres, K.P. Khemchandani, E. Oset, Solution to Faddeev equations with two-body experimental amplitudes as input and application to \(\text{ J }^{**}\text{ P } = 1/2+\), \(\text{ S } = 0\) baryon resonances. Phys. Rev. C 79, 065207 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    G. Ecker, Chiral perturbation theory. Prog. Part. Nucl. Phys. 35, 1 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    A. Pich, Chiral perturbation theory. Rep. Prog. Phys. 58, 563 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    E. Oset, A. Ramos, Non perturbative chiral approach to s-wave anti-K N interactions. Nucl. Phys. A 635, 99–120 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    M. Bando, T. Kugo, K. Yamawaki, Nonlinear Realization and Hidden Local Symmetries. Phys. Rept. 164, 217 (1988)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Bando, T. Kugo, K. Yamawaki, On the vector mesons as dynamical gauge bosons of hidden local symmetries. Nucl. Phys. B 259, 493 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    K.P. Khemchandani, H. Kaneko, H. Nagahiro, A. Hosaka, Vector meson-Baryon dynamics and generation of resonances. Phys. Rev. D 83, 114041 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    K.P. Khemchandani, A. Martinez Torres, H. Kaneko, H. Nagahiro, A. Hosaka, Coupling vector and pseudoscalar mesons to study baryon resonances. Phys. Rev. D 84, 094018 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    C. Patrignani et al., Particle data group. Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    L. Guo et al., Cascade production in the reactions gamma p –> K+ K+ (X) and gamma p –> K+ K+ pi- (X). Phys. Rev. C 76, 025208 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    R. Schumacher, CLAS Collaboration, Strangeness physics with CLAS at Jefferson lab. AIP Conf. Proc. 1257, 100 (2010)Google Scholar
  21. 21.
    T. Nagae, The J-PARC project. Nucl. Phys. A 805, 486 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    M.F.M. Lutz et al. [PANDA Collaboration], Physics performance report for PANDA: strong interaction studies with antiprotons. arXiv:0903.3905 [hep-ex]
  23. 23.
    K. Abe et al., [Belle Collaboration], Observation of Cabibbo suppressed and W exchange Lambda+(c) baryon decays. Phys. Lett. B 524, 33 (2002)Google Scholar
  24. 24.
    B. Aubert et al., [BaBar Collaboration], Measurement of the spin of the Xi(1530) resonance, Phys. Rev. D 78, 034008 (2008)Google Scholar
  25. 25.
    B. Aubert et al., [BaBar Collaboration], Measurement of the mass and width and study of the spin of the \(\varXi (1690)\) 0 resonance from \(\varLambda ^+_{c} \rightarrow \varLambda \bar{K}^0 K^{+}\) decay at Babar, hep-ex/0607043Google Scholar
  26. 26.
    J.A. Oller, E. Oset, Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the sigma, f0(980), a0(980) scalar mesons,” Nucl. Phys. A 620, 438 (1997) [Erratum-ibid. A 652, 407 (1999)]Google Scholar
  27. 27.
    E.E. Jenkins, M.E. Luke, A.V. Manohar, M.J. Savage, Chiral perturbation theory analysis of the baryon magnetic moments. Phys. Lett. B 302, 482–490 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    U.-G. Meissner, S. Steininger, Baryon magnetic moments in chiral perturbation theory. Nucl. Phys. B 499, 349–367 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    D. Jido, A. Hosaka, J.C. Nacher, E. Oset, A. Ramos, Magnetic moments of the Lambda(1405) and Lambda(1670) resonances. Phys. Rev. C 66, 025203 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    K.P. Khemchandani, A. Martinez Torres, H. Nagahiro, A. Hosaka, Phys. Rev. D 85, 114020 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    K.P. Khemchandani, A. Martinez Torres, A. Hosaka, H. Nagahiro, F.S. Navarra, M. Nielsen, Why \(\varXi (1690)\) and \(\varXi (2120)\) are so narrow? Phys. Rev. D 97, 034005 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • K. P. Khemchandani
    • 1
  • A. Martínez Torres
    • 2
  • A. Hosaka
    • 3
  • H. Nagahiro
    • 4
  • F. S. Navarra
    • 2
  • M. Nielsen
    • 2
  1. 1.Departamento de Ciências Exatas e da TerraUniversidade Federal de São PauloDiademaBrazil
  2. 2.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  3. 3.Research Center for Nuclear Physics (RCNP)IbarakiJapan
  4. 4.Department of PhysicsNara Women’s UniversityNaraJapan

Personalised recommendations