Advertisement

Few-Body Systems

, 59:13 | Cite as

Description of Five-Nucleon Systems Using Faddeev-Yakubovsky Equations

Article
  • 74 Downloads
Part of the following topical collections:
  1. Critical Stability 2017

Abstract

A brief overview of Faddeev-Yakubovsky equations is presented before deriving 5-body ones. Numerical formalism, enabling to solve these equations in configuration space for a system of five nucleons is described. Microscopic calculations are realized to determine phaseshifts of low energy neutron scattering on \(^4\)He and \(1/2^+\) resonance position of \(^5\)H, employing phenomenological MT I-III potential.

References

  1. 1.
    L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961)Google Scholar
  2. 2.
    O.A. Yakubovsky, Sov. J. Nucl. Phys. 5, 937 (1967)Google Scholar
  3. 3.
    H. Kamada, S. Oryu, Few-Body Syst. 12(2), 201 (1992).  https://doi.org/10.1007/BF01074816 ADSCrossRefGoogle Scholar
  4. 4.
    D. Baye, Phys. Rep. 565, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Lazauskas, Scattering of heavy charged particles in atomic and nuclear systems. Ph.D. thesis, Université Joseph Fourier, Grenoble (2003). https://hal.archives-ouvertes.fr/tel-00004178
  6. 6.
    R. Lazauskas, arXiv:1711.04716 (2017)
  7. 7.
    R. Malfliet, J. Tjon, Nucl. Phys. A 127(1), 161 (1969).  https://doi.org/10.1016/0375-9474(69)90775-1 ADSCrossRefGoogle Scholar
  8. 8.
    A. Kievsky, M. Viviani, P. Barletta, C. Romero-Redondo, E. Garrido, Phys. Rev. C 81, 034002 (2010).  https://doi.org/10.1103/PhysRevC.81.034002
  9. 9.
    A. Csótó, G.M. Hale, Phys. Rev. C 55, 536 (1997).  https://doi.org/10.1103/PhysRevC.55.536
  10. 10.
    P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo, A. Calci, Physica Scripta 91(5), 053002 (2016). http://stacks.iop.org/1402-4896/91/i=5/a=053002
  11. 11.
    K.M. Nollett, S.C. Pieper, R.B. Wiringa, J. Carlson, G.M. Hale, Phys. Rev. Lett. 99, 022502 (2007).  https://doi.org/10.1103/PhysRevLett.99.022502
  12. 12.
    R. Lazauskas, J. Carbonell, Phys. Rev. C 72, 034003 (2005).  https://doi.org/10.1103/PhysRevC.72.034003
  13. 13.
    E. Hiyama, R. Lazauskas, J. Carbonell, M. Kamimura, Phys. Rev. C 93, 044004 (2016).  https://doi.org/10.1103/PhysRevC.93.044004
  14. 14.
    A.M. Shirokov, G. Papadimitriou, A.I. Mazur, I.A. Mazur, R. Roth, J.P. Vary, Phys. Rev. Lett. 117, 182502 (2016).  https://doi.org/10.1103/PhysRevLett.117.182502. https://link.aps.org/doi/10.1103/PhysRevLett.117.182502
  15. 15.
    K. Fossez, J. Rotureau, N. Michel, M. Płoszajczak, Phys. Rev. Lett. 119, 032501 (2017).  https://doi.org/10.1103/PhysRevLett.119.032501. https://link.aps.org/doi/10.1103/PhysRevLett.119.032501
  16. 16.
    K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, M. Assie, H. Baba, T. Baba, D. Beaumel, M. Dozono, T. Fujii, N. Fukuda, S. Go, F. Hammache, E. Ideguchi, N. Inabe, M. Itoh, D. Kameda, S. Kawase, T. Kawabata, M. Kobayashi, Y. Kondo, T. Kubo, Y. Kubota, M. Kurata-Nishimura, C.S. Lee, Y. Maeda, H. Matsubara, K. Miki, T. Nishi, S. Noji, S. Sakaguchi, H. Sakai, Y. Sasamoto, M. Sasano, H. Sato, Y. Shimizu, A. Stolz, H. Suzuki, M. Takaki, H. Takeda, S. Takeuchi, A. Tamii, L. Tang, H. Tokieda, M. Tsumura, T. Uesaka, K. Yako, Y. Yanagisawa, R. Yokoyama, K. Yoshida, Phys. Rev. Lett. 116, 052501 (2016).  https://doi.org/10.1103/PhysRevLett.116.052501 ADSCrossRefGoogle Scholar
  17. 17.
    A.H. Wuosmaa, S. Bedoor, K.W. Brown, W.W. Buhro, Z. Chajecki, R.J. Charity, W.G. Lynch, J. Manfredi, S.T. Marley, D.G. McNeel, A.S. Newton, D.V. Shetty, R.H. Showalter, L.G. Sobotka, M.B. Tsang, J.R. Winkelbauer, R.B. Wiringa, Phys. Rev. C 95, 014310 (2017).  https://doi.org/10.1103/PhysRevC.95.014310
  18. 18.
    K. Arai, Phys. Rev. C 68, 034303 (2003).  https://doi.org/10.1103/PhysRevC.68.034303
  19. 19.
    A. Adahchour, P. Descouvemont, Nuclear Physics A 813(3), 252 (2008).  https://doi.org/10.1016/j.nuclphysa.2008.09.008. http://www.sciencedirect.com/science/article/pii/S037594740800715X
  20. 20.
    S. Aoyama, N. Itagaki, Nuclear Physics A 738, 362 (2004).  https://doi.org/10.1016/j.nuclphysa.2004.04.062. http://www.sciencedirect.com/science/article/pii/S0375947404006037. Proceedings of the 8th International Conference on Clustering Aspects of Nuclear Structure and Dynamics
  21. 21.
    P. Descouvemont, A. Kharbach, Phys. Rev. C 63, 027001 (2001).  https://doi.org/10.1103/PhysRevC.63.027001
  22. 22.
    J. Broeckhove, F. Arickx, P. Hellinckx, V.S. Vasilevsky, A.V. Nesterov, Journal of Physics G: Nuclear and Particle Physics 34(9), 1955 (2007). http://stacks.iop.org/0954-3899/34/i=9/a=008
  23. 23.
    L.V. Grigorenko, N.K. Timofeyuk, M.V. Zhukov, Eur. Phys. J. A–Hadrons Nuclei 19(2), 187 (2004).  https://doi.org/10.1140/epja/i2003-10124-1 ADSCrossRefGoogle Scholar
  24. 24.
    R. de Diego, E. Garrido, D. Fedorov, A. Jensen, Nuclear Physics A 786(1), 71 (2007).  https://doi.org/10.1016/j.nuclphysa.2007.02.002. http://www.sciencedirect.com/science/article/pii/S0375947407001650
  25. 25.
    V. Kukulin, V. Krasnopolsky, J. Phys. A10, L33 (1977).  https://doi.org/10.1088/0305-4470/10/2/002 ADSGoogle Scholar
  26. 26.
    V.I. Kukulin, V.M. Krasnopolsky, J. Horácek, Theory of Resonances (Kluwer, Dordrecht, 1989)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de StrasbourgStrasbourgFrance

Personalised recommendations