Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Few-Body Systems
  3. Article
Experimentally Accessible Invariants Encoded in Interparticle Correlations of Harmonically Trapped Ultra-cold Few-Fermion Mixtures
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Sudden quench of harmonically trapped mass-imbalanced fermions

16 November 2022

Dillip K. Nandy & Tomasz Sowiński

Optimal Upper Bound for the Correlation Energy of a Fermi Gas in the Mean-Field Regime

13 July 2019

Niels Benedikter, Phan Thành Nam, … Robert Seiringer

Correlation energy of a weakly interacting Fermi gas

03 May 2021

Niels Benedikter, Phan Thành Nam, … Robert Seiringer

Pair-correlation ansatz for the ground state of interacting bosons in an arbitrary one-dimensional potential

23 June 2021

Przemysław Kościk, Arkadiusz Kuroś, … Tomasz Sowiński

On the Correlation Energy of Interacting Fermionic Systems in the Mean-Field Regime

11 February 2020

Christian Hainzl, Marcello Porta & Felix Rexze

Exchange-Correlation Effects and the Quasiparticle Properties in a Two-Dimensional Dipolar Fermi Liquid

17 December 2019

Iran Seydi, Saeed H. Abedinpour, … B. Tanatar

Many-Body State and Dynamic Behaviour of the Pair-Correlation Function of a Small Bose–Einstein Condensate Confined in a Ring Potential

05 September 2022

A. Roussou, J. Smyrnakis, … G. M. Kavoulakis

The effect of long-range interactions on the dynamics and statistics of 1D Hamiltonian lattices with on-site potential

01 September 2018

H. Christodoulidi, A. Bountis & L. Drossos

On the weakness of short-range interactions in Fermi gases

20 December 2022

M. Griesemer & M. Hofacker

Download PDF
  • Open Access
  • Published: 29 November 2017

Experimentally Accessible Invariants Encoded in Interparticle Correlations of Harmonically Trapped Ultra-cold Few-Fermion Mixtures

  • Daniel Pęcak  ORCID: orcid.org/0000-0002-2462-29421,
  • Mariusz Gajda1 &
  • Tomasz Sowiński1 

Few-Body Systems volume 58, Article number: 159 (2017) Cite this article

  • 329 Accesses

  • 6 Citations

  • Metrics details

Abstract

A system of a two-flavour mixture of ultra-cold fermions confined in a one-dimensional harmonic trap is studied. Using the well-known properties of the centre-of-mass frame we present a numerical method of obtaining energetic spectra in this frame for an arbitrary mass ratio of fermionic species. We identify a specific invariant encoded in many-body correlations which may be helpful to determine an eigenstate of the Hamiltonian and to label excitations of the centre of mass. The tool presented can be easily applied and thus may be particularly useful in an experimental analysis of the interparticle interactions which do not affect the centre of mass excitations in a harmonic potential.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D. Blume, Physics 3, 74 (2010)

    Article  Google Scholar 

  2. D. Blume, Rep. Prog. Phys. 75, 046401 (2012)

    Article  ADS  Google Scholar 

  3. A.G. Volosniev, D.V. Fedorov, A.S. Jensen, M. Valiente, N.T. Zinner, Nat. Commun. 5, 5300 (2014)

    Article  ADS  Google Scholar 

  4. M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University Press, Oxford, 2012)

    Book  MATH  Google Scholar 

  5. A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, Science 342(6157), 457 (2013)

  6. G. Zürn, F. Serwane, T. Lompe, A.N. Wenz, M.G. Ries, J.E. Bohn, S. Jochim, Phys. Rev. Lett. 108, 075303 (2012)

    Article  ADS  Google Scholar 

  7. F. Serwane, G. Zürn, T. Lompe, T.B. Ottenstein, A.N. Wenz, S. Jochim, Science 332, 336 (2011)

    Article  ADS  Google Scholar 

  8. S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S.M. Reimann, L. Santos, T. Lompe, S. Jochim, Phys. Rev. Lett. 115, 215301 (2015)

    Article  ADS  Google Scholar 

  9. A.M. Kaufman, B.J. Lester, M. Foss-Feig, M.L. Wall, A.M. Rey, C. Regal, Nature 527, 208 (2015)

    Article  ADS  Google Scholar 

  10. R. Onofrio, Physics-Uspekhi 59, 1129 (2017)

  11. T. Busch, B.G. Englert, K. Rza̧żewski, M. Wilkens, Found. Phys. 28, 549 (1998)

    Article  Google Scholar 

  12. X.J. Liu, H. Hu, P.D. Drummond, Phys. Rev. A 82, 023619 (2010)

    Article  ADS  Google Scholar 

  13. J.P. Kestner, L.M. Duan, Phys. Rev. A 76, 033611 (2007)

    Article  ADS  Google Scholar 

  14. F. Werner, Y. Castin, Phys. Rev. Lett. 97, 150401 (2006)

    Article  ADS  Google Scholar 

  15. N.J.S. Loft, A.S. Dehkharghani, N.P. Mehta, A.G. Volosniev, N.T. Zinner, EPJ D 69, 65 (2015)

    Article  ADS  Google Scholar 

  16. P. Kościk, Eur. Phys. J. B 85, 173 (2012)

    Article  ADS  Google Scholar 

  17. P. Kościk, Phys. Lett. A 379, 293 (2015)

    Article  MathSciNet  Google Scholar 

  18. P. Kościk, Phys. Lett. A 380, 1256 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Olshanii, S.G. Jackson, New J. Phys. 17, 105005 (2015)

    Article  ADS  Google Scholar 

  20. N.L. Harshman, Few-Body Syst. 57, 11 (2016)

    Article  ADS  Google Scholar 

  21. N.L. Harshman, Few-Body Syst. 57, 45 (2016)

    Article  ADS  Google Scholar 

  22. A.S. Dehkharghani, A.G. Volosniev, N.T. Zinner, J. Phys. B: At. Mol. Opt. Phys. 49, 085301 (2016)

  23. M.A. García-March, B. Juliá-Díaz, G.E. Astrakharchik, J. Boronat, A. Polls, Phys. Rev. A 90, 063605 (2014)

    Article  ADS  Google Scholar 

  24. M. Gajda, Phys. Rev. A 73, 023603 (2006)

    Article  ADS  Google Scholar 

  25. D.H. Gloeckner, R.D. Lawson, Phys. Lett. B 53, 313 (1974)

    Article  ADS  Google Scholar 

  26. D.V. Fedorov, M. Mikkelsen, A.S. Jensen, N.T. Zinner, Few-Body Syst. 56, 889 (2015)

    Article  ADS  Google Scholar 

  27. R.E. Barfknecht, A.S. Dehkharghani, A. Foerster, N.T. Zinner, J. Phys. B: At. Mol. Opt. Phys. 49, 135301 (2016)

    Article  ADS  Google Scholar 

  28. M.A. Załuska-Kotur, M. Gajda, A. Orłowski, J. Mostowski, Phys. Rev. A 61, 033613 (2000)

    Article  ADS  Google Scholar 

  29. P. Bienias, S. Choi, O. Firstenberg, M.F. Maghrebi, M. Gullans, M.D. Lukin, A.V. Gorshkov, H.P. Büchler, Phys. Rev. A 90, 053804 (2014)

    Article  ADS  Google Scholar 

  30. J.G. Cosme, C. Weiss, J. Brand, Phys. Rev. A 94, 043603 (2016)

    Article  ADS  Google Scholar 

  31. L.A. Williamson, P.B. Blakie, Phys. Rev. A 94, 063615 (2016)

    Article  ADS  Google Scholar 

  32. R.G. McDonald, A.S. Bradley, Phys. Rev. A 93, 063604 (2016)

    Article  ADS  Google Scholar 

  33. E. Wille, F. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T.G. Tiecke, J.T.M. Walraven, S.J.J.M.F. Kokkelmans, E. Tiesinga, P.S. Julienne, Phys. Rev. Lett. 100, 053201 (2008)

    Article  ADS  Google Scholar 

  34. T.G. Tiecke, M.R. Goosen, A. Ludewig, S.D. Gensemer, S. Kraft, S.J.J.M.F. Kokkelmans, J.T.M. Walraven, Phys. Rev. Lett. 104, 053202 (2010)

    Article  ADS  Google Scholar 

  35. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  36. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)

  37. I. Bialynicki-Birula, Lett. Math. Phys. 10, 189 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  38. I. Bialynicki-Birula, Z. Bialynicka-Birula, Phys. Rev. A 65, 063606 (2002)

    Article  ADS  Google Scholar 

  39. T. Sowiński, Acta Phys. Polonica. 38, 2173 (2007)

    ADS  MathSciNet  Google Scholar 

  40. T. Sowiński, T. Grass, O. Dutta, M. Lewenstein, Phys. Rev. A 88, 033607 (2013)

    Article  ADS  Google Scholar 

  41. S.E. Gharashi, D. Blume, Phys. Rev. Lett. 111, 045302 (2013)

    Article  ADS  Google Scholar 

  42. D. Pęcak, M. Gajda, T. Sowiński, New J. Phys. 18, 013030 (2016)

  43. D. Pęcak, T. Sowiński, Phys. Rev. A 94, 042118 (2016)

    Article  ADS  Google Scholar 

  44. S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I.E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, T. Schumm, Phys. Rev. A 81, 031610 (2010)

    Article  ADS  Google Scholar 

  45. W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Foelling, L. Pollet, M. Greiner, Science 329, 547 (2010)

    Article  ADS  Google Scholar 

  46. J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Nature 467, 68 (2010)

    Article  ADS  Google Scholar 

  47. A. Omran, M. Boll, T.A. Hilker, K. Kleinlein, G. Salomon, I. Bloch, C. Gross, Phys. Rev. Lett. 115, 263001 (2015)

    Article  ADS  Google Scholar 

  48. L.W. Cheuk, M.A. Nichols, M. Okan, T. Gersdorf, V.V. Ramasesh, W.S. Bakr, T. Lompe, M.W. Zwierlein, Phys. Rev. Lett. 114, 193001 (2015)

    Article  ADS  Google Scholar 

  49. L.W. Cheuk, M.A. Nichols, K.R. Lawrence, M. Okan, H. Zhang, M.W. Zwierlein, Phys. Rev. Lett. 116, 235301 (2016)

    Article  ADS  Google Scholar 

  50. L.W. Cheuk, M.A. Nichols, K.R. Lawrence, M. Okan, H. Zhang, E. Khatami, N. Trivedi, T. Paiva, M. Rigol, M.W. Zwierlein, Science 353, 1260 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  51. M.F. Parsons, F. Huber, A. Mazurenko, C.S. Chiu, W. Setiawan, K. Wooley-Brown, S. Blatt, M. Greiner, Phys. Rev. Lett. 114, 213002 (2015)

    Article  ADS  Google Scholar 

  52. G.J.A. Edge, R. Anderson, D. Jervis, D.C. McKay, R. Day, S. Trotzky, J.H. Thywissen, Phys. Rev. A 92, 063406 (2015)

    Article  ADS  Google Scholar 

  53. E. Haller, J. Hudson, A. Kelly, D.A. Cotta, B. Peaudecerf, G.D. Bruce, S. Kuhr, Nat. Phys. 11, 738 (2015)

    Article  Google Scholar 

  54. M. Gajda, J. Mostowski, T. Sowiński, M. Załuska-Kotur, Europhys. Lett. 115, 20012 (2016)

    Article  ADS  Google Scholar 

  55. T. Sowiński, Phys. Rev. Lett. 108, 165301 (2012)

    Article  ADS  Google Scholar 

  56. S. Sala, P.I. Schneider, A. Saenz, Phys. Rev. Lett. 109, 073201 (2012)

    Article  ADS  Google Scholar 

  57. S. Sala, G. Zürn, T. Lompe, A.N. Wenz, S. Murmann, F. Serwane, S. Jochim, A. Saenz, Phys. Rev. Lett. 110, 203202 (2013)

    Article  ADS  Google Scholar 

  58. C. Özen, N.T. Zinner, EPJ D 68, 225 (2014)

    Article  ADS  Google Scholar 

  59. N.T. Zinner, A.S. Jensen, J. Phys. G: Nucl. Part. Phys. 40, 053101 (2013)

Download references

Author information

Authors and Affiliations

  1. Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02668, Warsaw, Poland

    Daniel Pęcak, Mariusz Gajda & Tomasz Sowiński

Authors
  1. Daniel Pęcak
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Mariusz Gajda
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Tomasz Sowiński
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Daniel Pęcak.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pęcak, D., Gajda, M. & Sowiński, T. Experimentally Accessible Invariants Encoded in Interparticle Correlations of Harmonically Trapped Ultra-cold Few-Fermion Mixtures. Few-Body Syst 58, 159 (2017). https://doi.org/10.1007/s00601-017-1321-3

Download citation

  • Received: 20 July 2017

  • Accepted: 16 November 2017

  • Published: 29 November 2017

  • DOI: https://doi.org/10.1007/s00601-017-1321-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.