Skip to main content

Information Theoretic Global Measures of Dirac Equation With Morse and Trigonometric Rosen–Morse Potentials

Abstract

In this study, the information-theoretic measures of (1+1)-dimensional Dirac equation in both position and momentum spaces are investigated for the trigonometric Rosen–Morse and the Morse potentials. The solutions of the corresponding Dirac equation are obtained in an exact analytical manner in the first step. Next, using the Fourier transformation, the position and momentum Shannon information entropies are obtained and some features of the probability densities are analyzed. The consistency with Bialynicki-Birula–Mycielski inequality and Heisenberg uncertainty is checked.

This is a preview of subscription content, access via your institution.

References

  1. C. Amovilli, N.H. March, Quantum information: Jaynes and shannon entropies in a two-electron entangled artificial atom. Phys. Rev. A 69(5), 054302 (2004)

    ADS  Article  Google Scholar 

  2. J.C. Angulo, J. Antolín, K.D. Sen, Fisher-shannon plane and statistical complexity of atoms. Phys. Lett. A 372(5), 670–674 (2008)

    ADS  Article  MATH  Google Scholar 

  3. A. Arda, R. Sever, C. Tezcan, Approximate analytical solutions of the Klein-Gordon equation for the hulthén potential with the position-dependent mass. Phys. Scr. 79(1), 015006 (2008)

    ADS  Article  MATH  Google Scholar 

  4. E. Aydiner, C. Orta, R. Sever, Quantum information entropies of the eigenstates of the morse potential. Int. J. Modern Phys. B 22(03), 231–237 (2008)

    ADS  Article  Google Scholar 

  5. W. Beckner, Inequalities in fourier analysis. Ann. Math. 102(1), 159–182 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  6. V.S. Buyarov, J.S. Dehesa, A. Martinez-Finkelshtein, E.B. Saff, Asymptotics of the information entropy for Jacobi and Laguerre polynomials with varying weights. J. Approx. Theory 99(1), 153–166 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  7. R.G. Catalán, J. Garay, R. López-Ruiz, Features of the extension of a statistical measure of complexity to continuous systems. Phys. Rev. E 66(1), 011102 (2002)

    ADS  Article  Google Scholar 

  8. M.W. Coffey, Semiclassical position and momentum information entropy for sech2 and a family of rational potentials. Can. J. Phys. 85(7), 733–743 (2007)

    ADS  Article  Google Scholar 

  9. T.M. Cover, J.A. Thomas et al., Elements of information theory, 2nd edn. (Wiley, New York, 1991)

  10. R. De, R. Dutt, U. Sukhatme, Mapping of shape invariant potentials under point canonical transformations. J. Phys. A: Math. Gen. 25(13), L843 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  11. A.S. de Castro, A. Armat, H. Hassanabadi, Scattering and bound states of fermions in the modified hulthén potential. Eur. Phys. J. Plus 129(10), 1–7 (2014)

    Article  Google Scholar 

  12. A. de Souza Dutra, C.A.S. Almeida, Exact solvability of potentials with spatially dependent effective masses. Phys. Lett. A 275(1), 25–30 (2000)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. J.S. Dehesa, W. Van Assche, R.J. Yáñez, Information entropy of classical orthogonal polynomials and their application to the harmonic oscillator and coulomb potentials. Methods Appl. Anal. 4, 91–110 (1997)

    MathSciNet  MATH  Google Scholar 

  14. J.S. Dehesa, A. Martínez-Finkelshtein, V.N. Sorokin, Information-theoretic measures for morse and Pöschl-Teller potentials. Mol. Phys. 104(4), 613–622 (2006)

    ADS  Article  Google Scholar 

  15. J.S. Dehesa, R.J. Yáñez, A.I. Aptekarev, V. Buyarov, Strong asymptotics of laguerre polynomials and information entropies of two-dimensional harmonic oscillator and one-dimensional coulomb potentials. J. Math. Phys. 39(6), 3050–3060 (1998)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. S. Dong, G.-H. Sun, S.-H. Dong, J.P. Draayer, Quantum information entropies for a squared tangent potential well. Phys. Let. A 378(3), 124–130 (2014)

  17. R. González-Férez, J.S. Dehesa, Shannon entropy as an indicator of atomic avoided crossings in strong parallel magnetic and electric fields. Phys. Rev. Lett. 91(11), 113001 (2003)

    ADS  Article  Google Scholar 

  18. H. Hatori, A note on the entropy of a continuous distribution, in Kodai Mathematical Seminar Reports, vol. 10 (Tokyo Institute of Technology, Department of Mathematics, 1958), pp. 172–176

    MATH  Google Scholar 

  19. W. Jian-Jie, Shannon entropy as a measurement of the information in a multiconfiguration diracfock wavefunction. Chin. Phys. Lett. 32(2), 023102 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  20. J. Katriel, K.D. Sen, Relativistic effects on information measures for hydrogen-like atoms. J. Comput. Appl. Math. 233(6), 1399–1415 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. A. Kumar, Information entropy of isospectral poschl-teller potential. Ind. J. Pure Appl. Phys. 44(12), 958–963 (2005)

    Google Scholar 

  22. R. Lopez-Ruiz, H.L. Mancini, X. Calbet, A statistical measure of complexity. Phy. Lett. A 209, 321–326 (1995). arXiv:nlin/0205033 [nlin.CD]

  23. V. Majernik, T. Opatrnỳ, Entropic uncertainty relations for a quantum oscillator. J. Phys. A: Math. Gen. 29(9), 2187 (1996)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. F.J. Marcellán, R.J. Yáñez, A. Zarzo, Special issue dedicated to professor Jesús sánchez-Dehesa on the occasion of his 60th birthday. J. Comput. Appl. Math. 233(6), 1345–1354 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  25. S.E. Massen, Application of information entropy to nuclei. Phys. Rev. C 67(1), 014314 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  26. A. Nagy, S. Liu, Local wave-vector, shannon and fisher information. Phys. Lett. A 372(10), 1654–1656 (2008)

    ADS  Article  MATH  Google Scholar 

  27. S.A. Najafizade, H. Hassanabadi, S. Zarrinkamar, Nonrelativistic shannon information entropy for killingbeck potential. Can. J. Phys. 94(10), 1085–1092 (2016)

    ADS  Article  Google Scholar 

  28. S.A. Najafizade, H. Hassanabadi, S. Zarrinkamar, Nonrelativistic shannon information entropy for kratzer potential. Chin. Phys. B 25(4), 040301 (2016)

    Article  Google Scholar 

  29. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Springer, Berlin, 1988)

    Book  MATH  Google Scholar 

  30. A. Orłowski, Information entropy and squeezing of quantum fluctuations. Phys. Rev. A 56(4), 2545 (1997)

    ADS  Article  Google Scholar 

  31. S.H. Patil, K.D. Sen, Net information measures for modified Yukawa and Hulthen potentials. Int. J. Quant. Chem. 107(9), 1864–1874 (2007)

    ADS  Article  Google Scholar 

  32. K.D. Sen, Characteristic features of shannon information entropy of confined atoms. J. Chem. Phys. 123(7), 074110–074110 (2005)

    ADS  Article  Google Scholar 

  33. C.E. Shannon, A Mathematical Theory of Communication. Bell syst Tech. J. 27 (379–423), 623–656 (1948)

  34. Q. Shi, S. Kais, Discontinuity of shannon information entropy for two-electron atoms. Chem. Phys. 309(2), 127–131 (2005)

  35. G.-H. Sun, M.A. Aoki, S.-H. Dong, Quantum information entropies of the eigenstates for the pöschl-Teller-like potential. Chin. Phys. B 22(5), 050302 (2013)

    Article  Google Scholar 

  36. G.-H. Sun, S.-H. Dong, Quantum information entropies of the eigenstates for a symmetrically trigonometric Rosen–Morse potential. Phys. Scr. 87(4), 045003 (2013)

  37. G.-H. Sun, S.-H. Dong, K.D. Launey, T. Dytrych, J.P. Draayer, Shannon information entropy for a hyperbolic double-well potential. Int. J. Quant. Chem. 115(14), 891–899 (2015)

    Article  Google Scholar 

  38. G.-H. Sun, S.-H. Dong, N. Saad, Quantum information entropies for an asymmetric trigonometric Rosen-Morse potential. Annalen der Physik 525(12), 934–943 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  39. C. Tezcan, R. Sever, A general approach for the exact solution of the Schrödinger equation. Int. J. Theor. Phys. 48(2), 337–350 (2009)

    Article  MATH  Google Scholar 

  40. R. Valencia-Torres, G.-H. Sun, S.-H. Dong, Quantum information entropy for a hyperbolical potential function. Phys. Scr. 90(3), 035205 (2015)

    ADS  Article  Google Scholar 

  41. O. von Roos, Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27(12), 7547 (1983)

    ADS  Article  Google Scholar 

  42. G. Yáñez-Navarro, G.-H. Sun, T. Dytrych, K.D. Launey, S.-H. Dong, J.P. Draayer, Quantum information entropies for position-dependent mass Schrödinger problem. Ann. Phys. 348, 153–160 (2014)

    ADS  Article  MATH  Google Scholar 

  43. S. Zarrinkamar, A.A. Rajabi, H. Hassanabadi, Dirac equation in the presence of coulomb and linear terms in (1+ 1) dimensions; the supersymmetric approach. Ann. Phys. 325(8), 1720–1726 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Najafizade.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Najafizade, S.A., Hassanabadi, H. & Zarrinkamar, S. Information Theoretic Global Measures of Dirac Equation With Morse and Trigonometric Rosen–Morse Potentials. Few-Body Syst 58, 149 (2017). https://doi.org/10.1007/s00601-017-1310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1310-6