Skip to main content
Log in

S-Wave Resonances Below the Ps(\(\hbox {n}\displaystyle = 2\)) Excitation Threshold of the Positron–Helium System Embedded in Dense Quantum Plasma

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Effects of dense quantum plasma on the S-wave resonance states in positron–helium system have been studied by calculating the density of resonance states with in the framework of the stabilization method. The screened interactions in plasma have been taken care of by a modified Debye–Huckel potential. A model potential has been used to represent the interaction between the outer electron and the He\(^+\) ionic core. Two resonance states below the \(\hbox {Ps}(n=2){-}\hbox {He}^+\) threshold have been identified. For the unscreened case, our present results are in nice accord with some of the best results available in the literature. Furthermore, a comparative study has been made on the changes in resonance states with the change in the background plasma—from classical Debye plasma to dense quantum plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ghoshal, Y.K. Ho, Eur. Phys. J. D 70, 265 (2016)

    Article  ADS  Google Scholar 

  2. S.C. Na, Y.D. Jung, Phys. Lett. A 372, 5605 (2008)

    Article  ADS  Google Scholar 

  3. Y.D. Jung, Phys. Plasmas 8, 3842 (2001)

    Article  ADS  Google Scholar 

  4. G. Chabrier, F. Douchin, A.Y. Potekhin, J. Phys. Condens. Matter 14, 9133 (2002)

    Article  ADS  Google Scholar 

  5. D. Kremp, M. Schlanges, W.D. Kraft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)

    MATH  Google Scholar 

  6. A.V. Andreev, JETP Lett. 72, 238 (2000)

    Article  ADS  Google Scholar 

  7. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  8. P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  9. G.V. Shpatakovskaya, J. Exp. Theor. Phys. 102, 466 (2006)

    Article  ADS  Google Scholar 

  10. L. Wei, Y.N. Wang, Phys. Rev. B 75, 193407 (2007)

    Article  ADS  Google Scholar 

  11. L.K. Ang, W.S. Koh, Y.Y. Lau, T.J.T. Kwan, Phys. Plasmas 13, 056701 (2006)

    Article  ADS  Google Scholar 

  12. D.E. Chang, A.S. Sorensen, P.R. Hemmer, M.D. Lukin, Phys. Rev. Lett. 97, 053002 (2006)

    Article  ADS  Google Scholar 

  13. T.C. Killian, Nature (London) 441, 298 (2006)

    Article  ADS  Google Scholar 

  14. K. Becker, K. Koutsospyros, S.M. Yin, C. Christodoulatos, N. Abramzon, J.C. Joaquin, G. Brelles-Marinoet, Plasma Phys. Control. Fusion 47, B513 (2005)

    Article  Google Scholar 

  15. G. Manfredi, Fields Inst. Commun. 46, 263 (2005)

    Google Scholar 

  16. J.C. Weisheit, Adv. At. Mol. Phys. 25, 101 (1988)

    Article  ADS  Google Scholar 

  17. P.K. Shukla, B. Eliasson, Phys. Lett. A 372, 2897 (2008)

    Article  ADS  Google Scholar 

  18. A. Ghoshal, Y.K. Ho, J. Phys. B 42, 075002 (2009)

    Article  ADS  Google Scholar 

  19. A. Ghoshal, Y.K. Ho, J. Phys. B 42, 175006 (2009)

    Article  ADS  Google Scholar 

  20. A. Ghoshal, Y.K. Ho, Phys. Plasmas 16, 073302 (2009)

    Article  ADS  Google Scholar 

  21. A. Ghoshal, Y.K. Ho, Chin. J. Phys. 48, 747 (2010)

    Google Scholar 

  22. P. Rej, A. Ghoshal, Phys. Plasmas 21, 113509 (2014)

    Article  Google Scholar 

  23. S. Nayek, A. Ghoshal, Phys. Scr. 88, 045301 (2013)

    Article  ADS  Google Scholar 

  24. A. Bhattacharya, M.Z.M. Kamali, A. Ghoshal, K. Ratnavelu, Phys. Plasmas 20, 083514 (2013)

    Article  ADS  Google Scholar 

  25. Z. Jiang, Y.Z. Zhang, S. Kar, Phys. Plasmas 22, 052105 (2015)

    Article  ADS  Google Scholar 

  26. P. Jiang, Z. Jiang, S. Kar, Few-body Syst. 57, 1165 (2016)

    Article  ADS  Google Scholar 

  27. L.Y. Zhang, X. Qi, X.Y. Zhao, D.Y. Meng, G.Q. Xiao, W.S. Duan, L. Yang, Phys. Plasmas 20, 113301 (2013)

    Article  ADS  Google Scholar 

  28. S. Paul, Y.K. Ho, Comput. Phys. Commun. 182, 130 (2011)

    Article  ADS  Google Scholar 

  29. D.H. Ki, Y.D. Jung, Phys. Plasmas 17, 074506 (2010)

    Article  ADS  Google Scholar 

  30. P.K. Shukla, B. Eliasson, Phys. Rev. Lett. 96, 245001 (2006)

    Article  ADS  Google Scholar 

  31. A. Hilbert, Adv. At. Mol. Phys. 18, 309 (1982)

    Article  ADS  Google Scholar 

  32. C. Laughlin, G.A. Victor, Adv. At. Mol. Phys. 25, 163 (1988)

    Article  ADS  Google Scholar 

  33. Y.P. Varshni, Phys. Rev. A 38, 1595 (1988)

    Article  ADS  Google Scholar 

  34. Y.P. Varshni, Eur. Phys. J. D 22, 229 (2003)

    Article  ADS  Google Scholar 

  35. A. Ghoshal, Y.K. Ho, Eur. Phys. J. D 56, 151 (2010)

    Article  ADS  Google Scholar 

  36. A. Ghoshal, Y.K. Ho, Phys. Rev. A 79, 062514 (2009)

    Article  ADS  Google Scholar 

  37. A. Ghoshal, Y.K. Ho, Few-Body Syst. 46, 249 (2009)

    Article  ADS  Google Scholar 

  38. T.K. Fang, Y.K. Ho, J. Phys. B At. Mol. Opt. Phys. 32, 3863 (1999)

    Article  ADS  Google Scholar 

  39. S.S. Tan, Y.K. Ho, Chin. J. Phys. 35, 701 (1997)

    Google Scholar 

  40. U. Roy, Y.K. Ho, J. Phys. B At. Mol. Opt. Phys. 35, 2149 (2002)

    Article  ADS  Google Scholar 

  41. W.C. Martin, J. Res. Natl. Bur. Stand. 64A, 19 (1960)

    Article  Google Scholar 

  42. Z.Z. Ren, H.L. Han, T.Y. Shi, J. Phys. B At. Mol. Opt. Phys. 44, 065204 (2011)

    Article  ADS  Google Scholar 

  43. S. Kar, Y.K. Ho, J. Phys. B 37, 3177 (2011)

    Article  ADS  Google Scholar 

  44. R.M. Yu, Y.J. Cheng, Y. Wang, Y.J. Zhou, Chin. Phys. B 21, 053402 (2012)

    Article  ADS  Google Scholar 

  45. Y.K. Ho, Phys. Rev. A 38, 6424 (1988)

    Article  ADS  Google Scholar 

  46. Y. Ning, Z.-C. Yan, Y.K. Ho, Phys. Plasmas 22, 013302 (2015)

    Article  ADS  Google Scholar 

  47. Y. Ning, Z.-C. Yan, Y.K. Ho, Atoms 4, 3 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Technology of the ROC. A. G. sincerely acknowledge the support received from UGC through Major Research project (F. No. 43-415/2014(SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Ghoshal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoshal, A., Ho, Y.K. S-Wave Resonances Below the Ps(\(\hbox {n}\displaystyle = 2\)) Excitation Threshold of the Positron–Helium System Embedded in Dense Quantum Plasma. Few-Body Syst 58, 138 (2017). https://doi.org/10.1007/s00601-017-1302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1302-6

Navigation