Skip to main content
Log in

Advances in Light-Front QCD: Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A remarkable feature of QCD is that the mass scale \(\kappa \) which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential \(\kappa ^4 \zeta ^2\) for mesons, where \(\zeta ^2\) is the LF radial variable conjugate to the \(q \bar{q}\) invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS\(_5\), the space of isometries of the conformal group—if one modifies the action of AdS\(_5\) by the dilaton \(e^{\kappa ^2 z^2}\) in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale \(\kappa \) underlying confinement and hadron masses can be connected to the parameter \(\Lambda _{\overline{MS}}\) in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling \(\alpha _s(Q^2)\) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale \(Q_0\) which sets the interface between perturbative and nonperturbative hadron dynamics. The use of \(Q_0\) to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949)

    Article  ADS  Google Scholar 

  2. S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299 (1998). arXiv:hep-th/9705477

    Article  ADS  MathSciNet  Google Scholar 

  3. S.J. Brodsky, M. Diehl, D.S. Hwang, Nucl. Phys. B 596, 99 (2001). arXiv:hep-th/0009254

    Article  ADS  Google Scholar 

  4. J. Terrell, Phys. Rev. 116, 1041 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Penrose, Proc. Camb. Philos. Soc. 55, 137 (1959)

    Article  ADS  Google Scholar 

  6. S.J. Brodsky, D.S. Hwang, B.Q. Ma, I. Schmidt, Nucl. Phys. B 593, 311 (2001). arXiv:hep-th/0003082

    Article  ADS  Google Scholar 

  7. I.Y. Kobzarev, L.B. Okun, Zh. Eksp. Teor. Fiz. 43, 1904 (1962) [Sov. Phys. JETP 16, 1343 (1963)]

  8. O.V. Teryaev, arXiv:hep-th/9904376

  9. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) [Yad. Fiz. 15, 781 (1972)]

  10. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  11. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]

  12. G.P. Lepage, S.J. Brodsky, Phys. Lett. 87B, 359 (1979)

    Article  ADS  Google Scholar 

  13. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  14. A.V. Efremov, A.V. Radyushkin, Phys. Lett. 94B, 245 (1980)

    Article  ADS  Google Scholar 

  15. A.V. Efremov, A.V. Radyushkin, Theor. Math. Phys. 42, 97 (1980) [Teor. Mat. Fiz. 42, 147 (1980)]

  16. S.J. Brodsky, S. Gardner, Phys. Rev. Lett. 116(1), 019101 (2016). arXiv:1504.00969 [hep-ph]

  17. H.C. Pauli, S.J. Brodsky, Phys. Rev. D 32, 1993 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Hornbostel, S.J. Brodsky, H.C. Pauli, Phys. Rev. D 41, 3814 (1990)

    Article  ADS  Google Scholar 

  19. G.F. de Teramond, S.J. Brodsky, Phys. Rev. Lett. 102, 081601 (2009). arXiv:0809.4899 [hep-ph]

    Article  ADS  Google Scholar 

  20. J.P. Vary, X. Zhao, A. Ilderton, H. Honkanen, P. Maris, S.J. Brodsky, Nucl. Phys. Proc. Suppl. 251–252, 10 (2014). arXiv:1406.1838 [nucl-th]

    Article  Google Scholar 

  21. S.J. Brodsky et al., arXiv:1502.05728 [hep-ph]

  22. V. de Alfaro, S. Fubini, G. Furlan, Nuovo Cim. A 34, 569 (1976)

    Article  ADS  Google Scholar 

  23. S.J. Brodsky, G.F. De Tramond, H.G. Dosch, Phys. Lett. B 729, 3 (2014). arXiv:1302.4105 [hep-th]

    Article  ADS  Google Scholar 

  24. D. Ashery, Nucl. Phys. Proc. Suppl. 90, 67 (2000) [Nucl. Phys. Proc. Suppl. 108, 321 (2002)] arXiv:hep-ex/0008036

  25. S.J. Brodsky, R.F. Lebed, Phys. Rev. Lett. 102, 213401 (2009). arXiv:0904.2225 [hep-th]

    Article  ADS  Google Scholar 

  26. A. Banburski, P. Schuster, Phys. Rev. D 86, 093007 (2012). arXiv:1206.3961 [hep-th]

    Article  ADS  Google Scholar 

  27. G.F. de Teramond, H.G. Dosch, S.J. Brodsky, Phys. Rev. D 87(7), 075005 (2013). arXiv:1301.1651 [hep-th]

    Article  ADS  Google Scholar 

  28. G.F. de Teramond, S.J. Brodsky, arXiv:1203.4025 [hep-ph]

  29. J. Polchinski, M.J. Strassler, Phys. Rev. Lett. 88, 031601 (2002). arXiv:hep-th/0109174

    Article  ADS  MathSciNet  Google Scholar 

  30. S.J. Brodsky, S.D. Drell, Phys. Rev. D 22, 2236 (1980)

    Article  ADS  Google Scholar 

  31. Z. Abidin, C.E. Carlson, Phys. Rev. D 79, 115003 (2009). arXiv:0903.4818 [hep-ph]

    Article  ADS  Google Scholar 

  32. S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015). arXiv:1407.8131 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  33. R.L. Jaffe, A. Manohar, Nucl. Phys. B 337, 509 (1990)

    Article  ADS  Google Scholar 

  34. K.Y.J. Chiu, S.J. Brodsky, Angular Momentum Conservation Law in Light-Front Quantum Field Theory, Phys. Rev. D 95(6), 065035 (2017). arXiv:1702.01127 [hep-th]. doi:10.1103/PhysRevD.95.065035

  35. S.J. Brodsky, F.G. Cao, G.F. de Teramond, Phys. Rev. D 84, 075012 (2011). arXiv:1105.3999 [hep-ph]

    Article  ADS  Google Scholar 

  36. J.R. Forshaw, R. Sandapen, Phys. Rev. Lett. 109, 081601 (2012). arXiv:1203.6088 [hep-ph]

    Article  ADS  Google Scholar 

  37. A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Phys. Rev. Lett. 104, 112002 (2010). arXiv:0911.4742 [hep-ph]

    Article  ADS  Google Scholar 

  38. R. Haag, J.T. Lopuszanski, M. Sohnius, Nucl. Phys. B 88, 257 (1975)

    Article  ADS  Google Scholar 

  39. S. Fubini, E. Rabinovici, Nucl. Phys. B 245, 17 (1984)

    Article  ADS  Google Scholar 

  40. G.F. de Teramond, H.G. Dosch, S.J. Brodsky, Phys. Rev. D 91(4), 045040 (2015). arXiv:1411.5243 [hep-ph]

    Article  ADS  Google Scholar 

  41. H.G. Dosch, G.F. de Teramond, S.J. Brodsky, Phys. Rev. D 91(8), 085016 (2015). arXiv:1501.00959 [hep-th]

    Article  ADS  Google Scholar 

  42. H.G. Dosch, G.F. de Teramond, S.J. Brodsky, Phys. Rev. D 92(7), 074010 (2015). arXiv:1504.05112 [hep-ph]

    Article  ADS  Google Scholar 

  43. T. Liu, B.Q. Ma, Phys. Rev. D 92(9), 096003 (2015). arXiv:1510.07783 [hep-ph]

    Article  ADS  Google Scholar 

  44. E. Klempt, B.C. Metsch, Eur. Phys. J. A 48, 127 (2012)

    Article  ADS  Google Scholar 

  45. H.G. Dosch, G.F. de Teramond, S.J. Brodsky, Phys. Rev. D 95(3), 034016 (2017). arXiv:1612.02370 [hep-ph]

    Article  ADS  Google Scholar 

  46. S.J. Brodsky, Nucl. Part. Phys. Proc. 258–259, 23 (2015). arXiv:1410.0404 [hep-ph]

    Article  Google Scholar 

  47. J.D. Bjorken, S.J. Brodsky, A. Scharff Goldhaber, Phys. Lett. B 726, 344 (2013). arXiv:1308.1435 [hep-ph]

    Article  ADS  Google Scholar 

  48. C. Cruz-Santiago, P. Kotko, Prog. Part. Nucl. Phys. 85, 82 (2015)

    Article  ADS  Google Scholar 

  49. S.J. Brodsky, R. Roskies, R. Suaya, Phys. Rev. D 8, 4574 (1973)

    Article  ADS  Google Scholar 

  50. S.J. Brodsky, G.F. de Teramond, arXiv:0901.0770 [hep-ph]

  51. A. Zee, Mod. Phys. Lett. A 23, 1336 (2008)

    Article  ADS  Google Scholar 

  52. A. Casher, L. Susskind, Phys. Rev. D 9, 436 (1974)

    Article  ADS  Google Scholar 

  53. S.J. Brodsky, R. Shrock, Proc. Nat. Acad. Sci. 108, 45 (2011). arXiv:0905.1151 [hep-th]

    Article  ADS  Google Scholar 

  54. S.J. Brodsky, C.D. Roberts, R. Shrock, P.C. Tandy, Phys. Rev. C 82, 022201 (2010). arXiv:1005.4610 [nucl-th]

    Article  ADS  Google Scholar 

  55. P.P. Srivastava, S.J. Brodsky, Phys. Rev. D 66, 045019 (2002). arXiv:hep-ph/0202141

    Article  ADS  Google Scholar 

  56. E.P. Verlinde, arXiv:1611.02269 [hep-th]

  57. G. Grunberg, Phys. Lett. 95B, 70 (1980) Erratum: [Phys. Lett. 110B, 501 (1982)]

  58. S.J. Brodsky, H.J. Lu, Phys. Rev. D 51, 3652 (1995). arXiv:hep-ph/9405218

    Article  ADS  Google Scholar 

  59. S.J. Brodsky, G.F. de Teramond, A. Deur, Phys. Rev. D 81, 096010 (2010). arXiv:1002.3948 [hep-ph]

    Article  ADS  Google Scholar 

  60. A. Deur, V. Burkert, J.P. Chen, W. Korsch, Phys. Lett. B 650, 244 (2007). arXiv:hep-ph/0509113

    Article  ADS  Google Scholar 

  61. A. Deur, S.J. Brodsky, G.F. de Teramond, Phys. Lett. B 750, 528 (2015). arXiv:1409.5488 [hep-ph]

    Article  ADS  Google Scholar 

  62. S.J. Brodsky, G.F. de TŽramond, A. Deur, H.G. Dosch, Few Body Syst. 56(6–9), 621 (2015). arXiv:1410.0425 [hep-ph]

    Article  ADS  Google Scholar 

  63. K.A. Olive et al., Particle Data Group. Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  64. A. Zee., Quantum field theory in a nutshell. (Princeton Univ. Pr, Princeton, 2010), 576 p

  65. M. Mojaza, S.J. Brodsky, X.G. Wu, Phys. Rev. Lett. 110, 192001 (2013). arXiv:1212.0049 [hep-ph]

    Article  ADS  Google Scholar 

  66. S. Liuti, A. Rajan, A. Courtoy, G.R. Goldstein, J.O. Gonzalez Hernandez, Int. J. Mod. Phys. Conf. Ser. 25, 1460009 (2014). arXiv:1309.7029 [hep-ph]

    Article  Google Scholar 

  67. C. Mondal, D. Chakrabarti, Eur. Phys. J. C 75(6), 261 (2015). arXiv:1501.05489 [hep-ph]

    Article  ADS  Google Scholar 

  68. C. Lorce, B. Pasquini, M. Vanderhaeghen, JHEP 1105, 041 (2011). arXiv:1102.4704 [hep-ph]

    Article  ADS  Google Scholar 

  69. S.J. Brodsky, AIP Conf. Proc. 1105, 315 (2009). arXiv:0811.0875 [hep-ph]

    Article  ADS  Google Scholar 

  70. S.J. Brodsky, Nucl. Phys. A 827, 327C (2009). arXiv:0901.0781 [hep-ph]

    Article  ADS  Google Scholar 

  71. S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530, 99 (2002). arXiv:hep-ph/0201296

    Article  ADS  Google Scholar 

  72. S.J. Brodsky, P. Hoyer, N. Marchal, S. Peigne, F. Sannino, Phys. Rev. D 65, 114025 (2002). arXiv:hep-ph/0104291

    Article  ADS  Google Scholar 

  73. S.J. Brodsky, B. Pasquini, B.W. Xiao, F. Yuan, Phys. Lett. B 687, 327 (2010). arXiv:1001.1163 [hep-ph]

    Article  ADS  Google Scholar 

  74. S.J. Brodsky, D.S. Hwang, Y.V. Kovchegov, I. Schmidt, M.D. Sievert, Phys. Rev. D 88(1), 014032 (2013). arXiv:1304.5237 [hep-ph]

    Article  ADS  Google Scholar 

  75. S.J. Brodsky, H.J. Lu, Phys. Rev. Lett. 64, 1342 (1990)

    Article  ADS  Google Scholar 

  76. S.J. Brodsky, I. Schmidt, J.J. Yang, Phys. Rev. D 70, 116003 (2004). arXiv:hep-ph/0409279

    Article  ADS  Google Scholar 

  77. I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens, Phys. Rev. D 77, 054013 (2008). arXiv:0710.4897 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley J. Brodsky.

Additional information

This article belongs to the Topical Collection “Light Cone 2016”.

Invited talk presented at Light Cone 2016, September 5–8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodsky, S.J. Advances in Light-Front QCD: Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra. Few-Body Syst 58, 133 (2017). https://doi.org/10.1007/s00601-017-1292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1292-4

Navigation