Skip to main content
Log in

Going Beyond the Point Nucleus Approximation to Satisfy the Hellmann–Feynman Theorem: Born–Oppenheimer \({\text {H}}_{\mathbf{2}}^{{\varvec{+}}}\) in the Ground State

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Incomplete spaces are investigated for solving the Schrödinger equation under the Born–Oppenheimer approximation. It is shown that the Hellmann–Feynman theorem cannot be used for computing the electronic force exerted on a nucleus, when a variational wavefunction with floating centers is used, if multicenter polynomial components are added in order to describe the polarization effects through the chemical bond. This is because the minimum of the potential energy surface is not a stationary point in the direction of the float parameter. Such a failure can be fixed by considering a molecular model with finite size nuclei, as defined herein. The classical electronic force is computed for that model, as compared with the standard point charge approximation, and it is applied to the \({\text {H}_2}^+\) molecular ion. As a result, the former model is found more accurate by several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Feynman, Forces in molecules. Phys. Rev. 56, 340 (1939)

    Article  ADS  MATH  Google Scholar 

  2. H. Hellmann, Einführung in die Quantenchemie (Franz Deuticke, Leipzig, 1937)

    Google Scholar 

  3. P. Lazzeretti, R. Zanasi, Connection between the nuclear electric shielding tensor and the infrared intensity. Chem. Phys. Lett. 112, 103–105 (1984)

    Article  ADS  Google Scholar 

  4. S.S.M. Dordrecht, in Fundamental World of Quantum Chemistry, vol. III, ed. by E.J. Brändas, E.S. Kryachko (Springer, Netherlands, 2004)

  5. P. Lazzeretti, Forces on the nuclei of a molecule in optical fields. Theor. Chem. Acc. 116, 420–426 (2006)

    Article  Google Scholar 

  6. P. Lazzeretti, R. Zanasi, Theory of nuclear electric shielding in molecules. Phys. Rev. A 24, 1696–1704 (1981)

    Article  ADS  Google Scholar 

  7. P. Lazzeretti, R. Zanasi, Calculations of nuclear electric shielding in molecules. Chem. Phys. Lett. 71, 529–533 (1980)

    Article  ADS  Google Scholar 

  8. P. Lazzeretti, R. Zanasi, Sum rules related to third-order properties: a numerical check. Chem. Phys. 288, 281–289 (2003)

    Article  ADS  Google Scholar 

  9. A. Soncini, V. Bakken, P. Lazzeretti, T. Helgaker, Calculation of electric dipole hypershieldings at the nuclei in the Hellmann–Feynman approximation. J. Chem. Phys. 120, 3142–3151 (2004)

    Article  ADS  Google Scholar 

  10. J. Linpiński, Sum rules for nonlinear optical properties of molecules. J. Chem. Phys. Lett. 394, 397–399 (2004)

    Article  ADS  Google Scholar 

  11. A. Dalgarno, Atomic polarizabilities and shielding factors. Adv. Phys. 11, 281–315 (1962)

    Article  ADS  Google Scholar 

  12. P.W. Langhoff, M. Karplus, R.P. Hurst, Approximations to Hartree–Fock perturbation theory. J. Chem. Phys. 44, 505–514 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  13. D.F. Tuan, A. Davidz, Different perturbed uncoupled Hartree–Fock (PUCHF) methods for physical properties. II. Dipole shielding factors. J. Chem. Phys. 55, 1294–1299 (1971)

    Article  ADS  Google Scholar 

  14. P. Lazzeretti, R. Zanasi, Analytic dipole moment geometric derivatives from nuclear electric shielding in molecules. J. Chem. Phys. 84, 3916–3920 (1984)

    Article  ADS  Google Scholar 

  15. R. Zanasi, P. Lazzeretti, Analytic dipole moment geometric derivatives from nuclear electric shielding: II. Application to two-heavy atom molecules. J. Chem. Phys. 85, 5932–5935 (1986)

    Article  ADS  Google Scholar 

  16. J. Lipiński, On the consequences of the violation of the Hellmann–Feynman theorem in calculations of electric properties of molecules. Chem. Phys. Lett. 363, 313–318 (2002)

    Article  ADS  Google Scholar 

  17. B.M. Deb, The Force Concept in Chemistry (Van Nostrand Reinhold, New York, 1981)

    Google Scholar 

  18. A.C. Hurley, The electrostatic calculation of molecular energies. II. Approximate wave functions and the electrostatic method. Proc. R. Soc. Lond. 226, 179 (1954)

    Article  ADS  MATH  Google Scholar 

  19. H. Shull, D.D. Ebbing, Floating wave functions for H2 \(+\) and H2. J. Chem. Phys. 28, 866–870 (1958)

  20. M. Geller, A.A. Frost, P.G. Lykos, Distortion of atomic orbitals in molecular orbitals. I. Polarization of the hydrogen atom in H\(_2^+\). J. Chem. Phys. 36, 2693 (1962)

    Article  ADS  Google Scholar 

  21. F.M. Fernández, Alternative treatment of separable quantum-mechanical models: The hydrogen molecular ion. J. Chem. Phys. 103, 6581 (1995)

    Article  ADS  Google Scholar 

  22. L. Visscher, K.G. Dyall, Dirac—Fock atomic electronic structure calculations using different nuclear charge distributions. At. Data Nucl. Data Tables 67(2), 207–224 (1997)

  23. A.J. Buchmann, E.M. Henley, Intrinsic quadrupole moment of the nucleon. Phys. Rev. C 63, 015202 (2000)

    Article  ADS  Google Scholar 

  24. A.J. Buchmann, Nucleon deformation and atomic spectroscopy. Can. J. Phys. 83, 455–465 (2005)

    Article  ADS  Google Scholar 

  25. A.J. Buchmann, Non-spherical proton shape and hydrogen hyperfine splitting. Can. J. Phys. 87, 773–783 (2009)

    Article  ADS  Google Scholar 

  26. T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. X, 157–177 (1957)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Gutlé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutlé, C. Going Beyond the Point Nucleus Approximation to Satisfy the Hellmann–Feynman Theorem: Born–Oppenheimer \({\text {H}}_{\mathbf{2}}^{{\varvec{+}}}\) in the Ground State. Few-Body Syst 58, 119 (2017). https://doi.org/10.1007/s00601-017-1284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1284-4

Navigation