Skip to main content
Log in

Transverse Densities of Octet Baryons from Chiral Effective Field Theory

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. We calculate the transverse densities of the octet baryons at peripheral distances \(b=O(M_\pi ^{-1})\) in an approach that combines chiral effective field theory (\(\chi \)EFT) and dispersion analysis. The densities are represented as dispersive integrals of the imaginary parts of the baryon electromagnetic form factors in the timelike region (spectral functions). The spectral functions on the two-pion cut at \(t > 4 M_\pi ^2\) are computed using relativistic \(\chi \)EFT with octet and decuplet baryons in the extended on-mass-shell renormalization scheme. The calculations are extended into the \(\rho \)-meson mass region using a dispersive method that incorporates the timelike pion form-factor data. The approach allows us to construct densities at distances \(b>1\) fm with controlled uncertainties. Our results provide insight into the peripheral structure of nucleons and hyperons and can be compared with empirical densities and lattice-QCD calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone. Phys. Rep. 301, 299–486 (1998). arXiv:hep-ph/9705477

    Article  ADS  MathSciNet  Google Scholar 

  2. D.E. Soper, The Parton model and the Bethe-Salpeter wave function. Phys. Rev. D 15, 1141 (1977)

    Article  ADS  Google Scholar 

  3. M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for \(\zeta \rightarrow 0\). Phys. Rev. D 62, 071,503 (2000), [Erratum: Phys. Rev. D 66, 119903 (2002)]. arXiv: hep-ph/0005108

  4. G.A. Miller, Charge density of the neutron. Phys. Rev. Lett. 99, 112001 (2007). arXiv:0705.2409 [nucl-th]

    Article  ADS  Google Scholar 

  5. G.A. Miller, Transverse charge densities. Ann. Rev. Nucl. Part. Sci. 60, 1 (2010). arXiv:1002.0355 [nucl-th]

    Article  ADS  Google Scholar 

  6. M. Burkardt, Impact parameter space interpretation for generalized parton distributions. Int. J. Mod. Phys. A 18, 173 (2003). arXiv:hep-ph/0207047

    Article  ADS  MATH  Google Scholar 

  7. C.F. Perdrisat, V. Punjabi, M. Vanderhaeghen, Nucleon electromagnetic form factors. Prog. Part. Nucl. Phys. 59, 694–764 (2007). arXiv:hep-ph/0612014

    Article  ADS  Google Scholar 

  8. V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, C.E. Carlson, The structure of the nucleon: elastic electromagnetic form factors. Eur. Phys. J. A 51, 79 (2015). arXiv:1503.01452

    Article  ADS  Google Scholar 

  9. M. Strikman, C. Weiss, Quantifying the nucleon’s pion cloud with transverse charge densities. Phys. Rev. C 82(042), 201 (2010). arXiv:1004.3535

    Google Scholar 

  10. C. Granados, C. Weiss, Chiral dynamics and peripheral transverse densities. JHEP 01, 092 (2014). arXiv:1308.1634

    Article  ADS  Google Scholar 

  11. C. Granados, C. Weiss, Light-front representation of chiral dynamics in peripheral transverse densities. JHEP 1507, 170 (2015). arXiv:1503.04839 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Granados, C. Weiss, Quantum-mechanical picture of peripheral chiral dynamics. Phys. Rev. C 92, 025206 (2015). arXiv:1503.02055 [hep-ph]

    Article  ADS  Google Scholar 

  13. G.A. Miller, M. Strikman, C. Weiss, Realizing vector meson dominance with transverse charge densities. Phys. Rev. C 84(045), 205 (2011). arXiv:1105.6364

    Google Scholar 

  14. J.M. Alarcón, A.N. Hiller Blin, M.J. Vicente Vacas, C. Weiss, Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis (2017). arXiv:1703.04534 [hep-ph]

  15. M.A. Belushkin, H.W. Hammer, U.G. Meißner, Dispersion analysis of the nucleon form-factors including meson continua. Phys. Rev. C 75(035), 202 (2007). arXiv:hep-ph/0608337

    Google Scholar 

  16. T.R. Hemmert, B.R. Holstein, J. Kambor, Systematic 1/M expansion for spin 3/2 particles in baryon chiral perturbation theory. Phys. Lett. B 395, 89–95 (1997). arXiv:hep-ph/9606456

    Article  ADS  Google Scholar 

  17. T.R. Hemmert, B.R. Holstein, J. Kambor, Chiral Lagrangians and delta (1232) interactions: formalism. J. Phys. G24, 1831–1859 (1998). arXiv:hep-ph/9712496

    Article  ADS  Google Scholar 

  18. V. Bernard, H.W. Fearing, T.R. Hemmert, U.G. Meissner, The form-factors of the nucleon at small momentum transfer. Nucl. Phys. A 635, 121–145 (1998). arXiv:hep-ph/9801297

    Article  ADS  Google Scholar 

  19. L.S. Geng, J. Martin Camalich, M.J. Vicente Vacas, Leading-order decuplet contributions to the baryon magnetic moments in chiral perturbation theory. Phys. Lett. B 676, 63–68 (2009). arXiv:0903.0779

    Article  ADS  Google Scholar 

  20. L.S. Geng, J. Martin Camalich, M.J. Vicente Vacas, Electromagnetic structure of the lowest-lying decuplet resonances in covariant chiral perturbation theory. Phy. Rev. D 80(034), 027 (2009). arXiv:0907.0631

    Google Scholar 

  21. T. Ledwig, J.M. Camalich, L.S. Geng, M.J.V. Vacas, Octet-baryon axial-vector charges and SU(3)-breaking effects in the semileptonic hyperon decays. Phys. Rev. D 90(5), 054502 (2014). arXiv:1405.5456

    Article  ADS  Google Scholar 

  22. T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer, Renormalization of relativistic baryon chiral perturbation theory and power counting. Phys. Rev. D 68(056), 005 (2003). arXiv:hep-ph/0302117

    Google Scholar 

  23. N. Kaiser, Spectral functions of isoscalar scalar and isovector electromagnetic form-factors of the nucleon at two loop order. Phys. Rev. C 68, 025202 (2003). arXiv:nucl-th/0302072

    Article  ADS  Google Scholar 

  24. W.R. Frazer, J.R. Fulco, Partial-wave dispersion relations for the process \(\pi \pi \rightarrow N \bar{N}\). Phys. Rev. 117, 1603 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. W.R. Frazer, J.R. Fulco, Effect of a pion-pion scattering resonance on nucleon structure II. Phys. Rev. 117, 1609 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Hohler, E. Pietarinen, The \(\rho N N\) vertex in vector dominance models. Nucl. Phys. B 95, 210 (1975)

    Article  ADS  Google Scholar 

  27. H.W. Hammer, D. Drechsel, U.G. Meißner, On the pion cloud of the nucleon. Phys. Lett. B 586, 291 (2003). arXiv:hep-ph/0310240

    Article  ADS  Google Scholar 

  28. G. Hohler, E. Pietarinen, I. Sabba Stefanescu, F. Borkowski, G.G. Simon, V.H. Walther, R.D. Wendling, Analysis of electromagnetic nucleon form-factors. Nucl. Phys. B114, 505–534 (1976)

    Article  ADS  Google Scholar 

  29. M.A. Belushkin, H.W. Hammer, U.G. Meißner, Novel evaluation of the two-pion contribution to the nucleon isovector form-factors. Phys. Lett. B 633, 507 (2006). arXiv:hep-ph/0510382

    Article  ADS  Google Scholar 

  30. M. Hoferichter, B. Kubis, J.R. de Elvira, H.W. Hammer, U.G. Meißner, On the \(\pi \pi \) continuum in the nucleon form factors and the proton radius puzzle. Eur. Phys. J. A 52, 331 (2016). arXiv:1609.06722 [hep-ph]

    Article  ADS  Google Scholar 

  31. C.E. Carlson, M. Vanderhaeghen, Empirical transverse charge densities in the nucleon and the nucleon-to-Delta transition. Phys. Rev. Lett. 100, 032004 (2008). arXiv:0710.0835 [hep-ph]

    Article  ADS  Google Scholar 

  32. C. Granados, C. Weiss, Light-front representation of chiral dynamics with isobar and large-N\(_{c}\) relations. JHEP 1606, 075 (2016). arXiv:1603.08881 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid N. Hiller Blin.

Additional information

This article belongs to the Topical Collection “Light Cone 2016”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcón, J.M., Hiller Blin, A.N. & Weiss, C. Transverse Densities of Octet Baryons from Chiral Effective Field Theory. Few-Body Syst 58, 121 (2017). https://doi.org/10.1007/s00601-017-1283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1283-5

Navigation