Skip to main content
Log in

Nonperturbative Strange Sea in Proton Using Wave Functions Inspired by Light Front Holography

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We use different light-front wave functions (two inspired by the AdS/QCD formalism), together with a model of the nucleon in terms of meson–baryon fluctuations to calculate the nonperturbative (intrinsic) contribution to the \(s(x) - \bar{s}(x)\) asymmetry of the proton sea. The holographic wave functions for an arbitrary number of constituents, recently derived by us, give results quite close to known parametrizations that appear in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Sullivan, One pion exchange and deep inelastic electron-nucleon scattering. Phys. Rev. D 5, 1732 (1972)

    Article  ADS  Google Scholar 

  2. A.W. Thomas, A limit on the pionic component of the nucleon through SU(3) flavor breaking in the sea. Phys. Lett. B 126, 97 (1983)

    Article  ADS  Google Scholar 

  3. M. Burkardt, B. Warr, Chiral symmetry and the charge asymmetry of the s anti-s distribution in the proton. Phys. Rev. D 45, 958 (1992)

    Article  ADS  Google Scholar 

  4. C. Boros, J.T. Londergan, A.W. Thomas, Evidence for substantial charge symmetry violation in parton distributions. Phys. Rev. Lett. 81, 4075 (1998)

    Article  ADS  Google Scholar 

  5. M. Burkardt, C.A. Miller, W.D. Nowak, Spin-polarized high-energy scattering of charged leptons on nucleons. Rep. Prog. Phys. 73, 016201 (2010)

    Article  ADS  Google Scholar 

  6. A.I. Signal, A.W. Thomas, Possible strength of the non-perturbative strange sea of the nucleon. Phys. Lett. B 191, 205 (1987)

    Article  ADS  Google Scholar 

  7. H.R. Christiansen, J. Magnin, Strange/anti-strange asymmetry in the nucleon sea. Phys. Lett. B 445, 8 (1998)

    Article  ADS  Google Scholar 

  8. H. Holtmann, A. Szczurek, J. Speth, Flavor and spin of the proton and the meson cloud. Nucl. Phys. A 596, 631 (1996)

    Article  ADS  Google Scholar 

  9. W. Melnitchouk, J. Speth, A.W. Thomas, Dynamics of light anti-quarks in the proton. Phys. Rev. D 59, 014033 (1998)

    Article  ADS  Google Scholar 

  10. S.A. Rabinowitz et al., Measurement of the strange sea distribution using neutrino charm production. Phys. Rev. Lett. 70, 134 (1993)

    Article  ADS  Google Scholar 

  11. A.O. Bazarko et al., (CCFR Collaboration). Determination of the strange quark content of the nucleon from a next-to-leading order QCD analysis of neutrino charm production. Z. Phys. C 65, 189 (1995)

    Article  ADS  Google Scholar 

  12. M. Arneodo et al., (New Muon Collaboration). Measurement of the proton and deuteron structure functions, F2(p) and F2(d), and of the ratio sigma-L/sigma-T. Nucl. Phys. B 483, 3 (1997)

    Article  ADS  Google Scholar 

  13. W.G. Seligman et al., Improved determination of alpha(s) from neutrino nucleon scattering. Phys. Rev. Lett. 79, 1213 (1997)

    Article  ADS  Google Scholar 

  14. S.J. Brodsky, B.Q. Ma, The quark/anti-quark asymmetry of the nucleon sea. Phys. Lett. B 381, 317 (1996)

    Article  ADS  Google Scholar 

  15. A. Vega, I. Schmidt, T. Gutsche, V.E. Lyubovitskij, Nonperturbative contribution to the strange-antistrange asymmetry of the nucleon sea. Phys. Rev. D 93(5), 056001 (2016)

    Article  ADS  Google Scholar 

  16. M. Gluck, E. Reya, M. Stratmann, Mesonic parton densities derived from constituent quark model constraints. Eur. Phys. J. C 2, 159 (1998)

    Article  ADS  Google Scholar 

  17. M. Gluck, E. Reya, A. Vogt, Dynamical parton distributions revisited. Eur. Phys. J. C 5, 461 (1998)

    Article  ADS  Google Scholar 

  18. M. Gluck, E. Reya, M. Stratmann, W. Vogelsang, Models for the polarized parton distributions of the nucleon. Phys. Rev. D 63, 094005 (2001)

    Article  ADS  Google Scholar 

  19. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Parton distributions and the LHC: \(W\) and \(Z\) production. Eur. Phys. J. C 14, 133 (2000)

    ADS  Google Scholar 

  20. H.L. Lai et al., (CTEQ Collaboration). Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions. Eur. Phys. J. C 12, 375 (2000)

    Article  ADS  Google Scholar 

  21. S.I. Alekhin, Global fit to the charged leptons DIS data: alpha(s) parton distributions, and high twists. Phys. Rev. D 63, 094022 (2001)

    Article  ADS  Google Scholar 

  22. A. Kusina et al., Strange quark PDFs and implications for Drell-Yan Boson Production at the LHC. Phys. Rev. D 85, 094028 (2012)

    Article  ADS  Google Scholar 

  23. F.G. Cao, A.I. Signal, On the phenomenological analyses of s-anti-s asymmetry in the nucleon sea. Phys. Rev. D 60, 074021 (1999)

    Article  ADS  Google Scholar 

  24. F. Olness et al., Neutrino dimuon production and the strangeness asymmetry of the nucleon. Eur. Phys. J. C 40, 145 (2005)

    Article  ADS  Google Scholar 

  25. R.D. Ball et al. (NNPDF Collaboration). Parton distributions for the LHC run II. JHEP 1504, 040 (2015)

  26. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). doi:10.1140/epjc/s10052-009-1072-5. arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  27. L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75(5), 204 (2015)

    Article  ADS  Google Scholar 

  28. S. Catani, D. de Florian, G. Rodrigo, W. Vogelsang, Perturbative generation of a strange-quark asymmetry in the nucleon. Phys. Rev. Lett. 93, 152003 (2004)

    Article  ADS  Google Scholar 

  29. M. Salajegheh, Intrinsic strange distributions in the nucleon from the light-cone models. Phys. Rev. D 92(7), 074033 (2015)

    Article  ADS  Google Scholar 

  30. G.Q. Feng, F.G. Cao, X.H. Guo, A.I. Signal, Perturbative and nonperturbative contributions to the strange quark asymmetry in the nucleon. Eur. Phys. J. C 72, 2250 (2012)

    Article  ADS  Google Scholar 

  31. S.J. Brodsky, G.F. de Teramond, Hadronic spectra and light-front wavefunctions in holographic QCD. Phys. Rev. Lett. 96, 201601 (2006)

    Article  ADS  Google Scholar 

  32. S.J. Brodsky, G.F. de Teramond, Light-front dynamics and AdS/QCD correspondence: the pion form factor in the space and time-like regions. Phys. Rev. D 77, 056007 (2008)

    Article  ADS  Google Scholar 

  33. S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-front holographic QCD and emerging confinement. Phys. Rep. 584, 1 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A. Vega, I. Schmidt, T. Branz, T. Gutsche, V.E. Lyubovitskij, Meson wave function from holographic models. Phys. Rev. D 80, 055014 (2009)

    Article  ADS  Google Scholar 

  35. T. Branz, T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Light and heavy mesons in a soft-wall holographic approach. Phys. Rev. D 82, 074022 (2010)

    Article  ADS  Google Scholar 

  36. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Dilaton in a soft-wall holographic approach to mesons and baryons. Phys. Rev. D 85, 076003 (2012)

    Article  ADS  Google Scholar 

  37. A. Vega, I. Schmidt, T. Gutsche, V.E. Lyubovitskij, Generalized parton distributions in AdS/QCD. Phys. Rev. D 83, 036001 (2011)

    Article  ADS  Google Scholar 

  38. A. Vega, I. Schmidt, T. Gutsche, V.E. Lyubovitskij, Generalized parton distributions in an AdS/QCD hard-wall model. Phys. Rev. D 85, 096004 (2012)

    Article  ADS  Google Scholar 

  39. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Light-front quark model consistent with Drell-Yan-West duality and quark counting rules. Phys. Rev. D 89, 054033 (2014)

    Article  ADS  Google Scholar 

  40. S. Carrazza, A. Ferrara, D. Palazzo, J. Rojo, APFEL Web: a web-based application for the graphical visualization of parton distribution functions. J. Phys. G 42(5), 057001 (2015)

    Article  ADS  Google Scholar 

  41. G.P. Zeller et al., (NuTeV Collaboration). A precise determination of electroweak parameters in neutrino nucleon scattering. Phys. Rev. Lett. 88, 091802 (2002)

    Article  ADS  Google Scholar 

  42. G.P. Zeller et al., NuTeV Collaboration). A precise determination of electroweak parameters in neutrino nucleon scattering (Erratum. Phys. Rev. Lett. 90, 239902 (2003)

    Article  ADS  Google Scholar 

  43. G.P. Zeller et al., (NuTeV Collaboration). On the effect of asymmetric strange seas and isospin violating parton distribution functions on \(\sin ^{2} \theta _{W}\) measured in the NuTeV experiment. Phys. Rev. D 65, 111103 (2002)

    Article  ADS  Google Scholar 

  44. G.P. Zeller et al., NuTeV Collaboration). On the effect of asymmetric strange seas and isospin violating parton distribution functions on \(\sin ^{2} \theta _{W}\) measured in the NuTeV experiment (Erratum. Phys. Rev. D 67, 119902 (2003)

    Article  ADS  Google Scholar 

  45. A. Kusina et al., nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties. arXiv:1509.01801 [hep-ph]

  46. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Nucleon structure in a light-front quark model consistent with quark counting rules and data. Phys. Rev. D 91, 054028 (2015)

    Article  ADS  Google Scholar 

  47. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Chiral Symmetry Breaking and Meson Wave Functions in Soft-Wall AdS/QCD. Phys. Rev. D 87, 056001 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Vega.

Additional information

This article belongs to the Topical Collection “Light Cone 2016”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, A., Schmidt, I., Gutsche, T. et al. Nonperturbative Strange Sea in Proton Using Wave Functions Inspired by Light Front Holography. Few-Body Syst 58, 87 (2017). https://doi.org/10.1007/s00601-017-1232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1232-3

Navigation