Skip to main content
Log in

Progress in the Calculation of Nucleon Transition form Factors

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We give a brief account of the Dyson–Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark–diquark approach and present a quark–diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klempt, E., Richard, J.-M.: Baryon spectroscopy. Rev. Mod. Phys. 82, 1095 (2010)

    Article  ADS  Google Scholar 

  2. Tiator, L., et al.: Electromagnetic excitation of nucleon resonances. Eur. Phys. J. Spec. Topics 198, 141 (2011)

    Article  ADS  Google Scholar 

  3. Aznauryan, I.G., et al.: Studies of nucleon resonance structure in exclusive meson electroproduction. Int. J. Mod. Phys. E22, 1330015 (2013)

    Article  ADS  Google Scholar 

  4. Aznauryan, I., Burkert, V.: Electroexcitation of nucleon resonances. Prog. Part. Nucl. Phys. 67, 1 (2012)

    Article  ADS  Google Scholar 

  5. Roberts, C.D., Williams, A.G.: Dyson-Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477 (1994)

    Article  ADS  Google Scholar 

  6. Alkofer, R., von Smekal, L.: The Infrared behavior of QCD Green’s functions. Phys. Rep. 353, 281 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Fischer, C.S.: Infrared properties of QCD from Dyson–Schwinger equations. J. Phys. G32, R253 (2006)

    Article  ADS  Google Scholar 

  8. Eichmann, G., Alkofer, R., Krassnigg, A., Nicmorus, D.: Nucleon mass from a covariant three-quark Faddeev equation. Phys. Rev. Lett. 104, 201601 (2010)

    Article  ADS  Google Scholar 

  9. Sanchis-Alepuz, H., et al.: Delta and Omega masses in a three-quark covariant Faddeev approach. Phys. Rev. D84, 096003 (2011)

    ADS  Google Scholar 

  10. Eichmann, G.: Nucleon electromagnetic form factors from the covariant Faddeev equation. Phys. Rev. D84, 014014 (2011)

    ADS  Google Scholar 

  11. Sanchis-Alepuz, H., Williams, R.: Hadronic observables from Dyson–Schwinger and Bethe–Salpeter equations. J. Phys. Conf. Ser. 631(1), 012064 (2015)

    Article  ADS  Google Scholar 

  12. Maris, P., Roberts, C.D., Tandy, P.C.: Pion mass and decay constant. Phys. Lett. B420, 267 (1998)

    Article  ADS  Google Scholar 

  13. Maris, P., Tandy, P.C.: The Quark photon vertex and the pion charge radius. Phys. Rev. C61, 045202 (2000)

    ADS  Google Scholar 

  14. Maris, P., Tandy, P.C.: Bethe–Salpeter study of vector meson masses and decay constants. Phys. Rev. C60, 055214 (1999)

    ADS  Google Scholar 

  15. Sanchis-Alepuz, H., Fischer, C.S.: Octet and Decuplet masses: a covariant three-body Faddeev calculation. Phys. Rev. D90(9), 096001 (2014)

    ADS  Google Scholar 

  16. Alkofer, R., et al.: Electromagnetic baryon form factors in the Poincaré-covariant Faddeev approach. Hyperfine Interact. 234(1), 149 (2015)

    Article  ADS  Google Scholar 

  17. Sanchis-Alepuz, H., Fischer, C.S.: Hyperon elastic electromagnetic form factors in the space-like momentum region. arXiv:1512.00833 [hep-ph]

  18. Oettel, M., Pichowsky, M., von Smekal, L.: Current conservation in the covariant quark diquark model of the nucleon. Eur. Phys. J. A8, 251 (2000)

    Article  ADS  Google Scholar 

  19. Maris, P.: Effective masses of diquarks. Few Body Syst. 32, 41 (2002)

    Article  ADS  Google Scholar 

  20. Bender, A., Roberts, C.D., Von Smekal, L.: Goldstone theorem and diquark confinement beyond rainbow ladder approximation. Phys. Lett. B380, 7 (1996)

    Article  ADS  Google Scholar 

  21. De Sanctis, M., Ferretti, J., Santopinto, E., Vassallo, A.: Electromagnetic form factors in the relativistic interacting quark-diquark model of baryons. Phys. Rev. C84, 055201 (2011)

    ADS  Google Scholar 

  22. Santopinto, E., Ferretti, J.: Strange and nonstrange baryon spectra in the relativistic interacting quark-diquark model with a Gürsey and Radicati-inspired exchange interaction. Phys. Rev. C92(2), 025202 (2015)

    ADS  Google Scholar 

  23. Eichmann, G., Fischer, C.S., Heupel, W.: The light scalar mesons as tetraquarks. Phys. Lett. B753, 282 (2016)

    Article  Google Scholar 

  24. Roberts, H.L., et al.: Masses of ground and excited-state hadrons. Few Body Syst. 51, 1 (2011)

    Article  ADS  Google Scholar 

  25. Chen, C., et al.: Spectrum of hadrons with strangeness. Few Body Syst. 53, 293 (2012)

    Article  ADS  Google Scholar 

  26. Oettel, M., Hellstern, G., Alkofer, R., Reinhardt, H.: Octet and decuplet baryons in a covariant and confining diquark-quark model. Phys. Rev. C58, 2459 (1998)

    ADS  Google Scholar 

  27. Cloet, I.C., Eichmann, G., El-Bennich, B., Klahn, T., Roberts, C.D.: Survey of nucleon electromagnetic form factors. Few Body Syst. 46, 1 (2009)

    Article  ADS  Google Scholar 

  28. Segovia, J., et al.: Completing the picture of the Roper resonance. Phys. Rev. Lett. 115(17), 171801 (2015)

    Article  ADS  Google Scholar 

  29. Eichmann, G.: Hadron Properties from QCD Bound-State Equations. Ph.D. thesis, University of Graz (2009), arXiv:0909.0703 [hep-ph]

  30. Eichmann, G., Cloet, I.C., Alkofer, R., Krassnigg, A., Roberts, C.D.: Toward unifying the description of meson and baryon properties. Phys. Rev. C79, 012202 (2009)

    ADS  Google Scholar 

  31. Eichmann, G., Nicmorus, D.: Nucleon to Delta electromagnetic transition in the Dyson–Schwinger approach. Phys. Rev. D85, 093004 (2012)

    ADS  Google Scholar 

  32. Nicmorus, D., Eichmann, G., Alkofer, R.: Delta and Omega electromagnetic form factors in a Dyson–Schwinger/Bethe–Salpeter approach. Phys. Rev. D82, 114017 (2010)

    ADS  Google Scholar 

  33. Mader, V., et al.: Hadronic decays of mesons and baryons in the Dyson–Schwinger approach. Phys. Rev. D84, 034012 (2011)

    ADS  Google Scholar 

  34. Krassnigg, A.: Survey of \(J=0,1\) mesons in a Bethe–Salpeter approach. Phys. Rev. D80, 114010 (2009)

    ADS  Google Scholar 

  35. Chang, L., Roberts, C.D.: Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Williams, R., Fischer, C.S., Heupel, W.: Light mesons in QCD and unquenching effects from the 3PI effective action. arXiv:1512.00455 [hep-ph]

  37. Olive, K.A., et al.: Review of particle physics. Chin. Phys. C38, 090001 (2014)

    Article  ADS  Google Scholar 

  38. Eichmann, G., Ramalho, G.: (In preparation)

  39. Ramalho, G., Tsushima, K.: A simple relation between the \(\gamma N\rightarrow N(1535)\) helicity amplitudes. Phys. Rev. D84, 051301 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Eichmann.

Additional information

This article belongs to the special issue “Nucleon Resonances”.

This work is supported by the German Science Foundation DFG under project number DFG TR-16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eichmann, G. Progress in the Calculation of Nucleon Transition form Factors. Few-Body Syst 57, 965–973 (2016). https://doi.org/10.1007/s00601-016-1134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1134-9

Navigation