Skip to main content
Log in

Light-Front Holography, Color Confinement, and Supersymmetric Features of QCD

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Light-Front Quantization—Dirac’s “Front Form”—provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic light-front wavefunctions. One obtains new insights into the hadronic spectrum, light-front wavefunctions, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography—the duality between the front form and AdS5, the space of isometries of the conformal group. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons of the same parity. The mass scale \({\kappa}\) underlying confinement and hadron masses can be connected to the parameter \({\Lambda_{\overline {MS}}}\) in the QCD running coupling by matching the nonperturbative dynamics, as described by the effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The result is an effective coupling defined at all momenta. This matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for nuclear parton distribution functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac P.A.M.: Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Brodsky, S.J., Diehl, M. and Hwang, D.S.: Light cone wave function representation of deeply virtual Compton scattering. Nucl. Phys. B. 596,99 (2001) [arXiv:hep-ph/0009254]

  3. Brodsky, S.J., Pauli, H.C. and Pinsky, S.S.: Quantum chromodynamics and other field theories on the light cone. Phys. Rept. 301,299 (1998) [arXiv:hep-ph/9705477]

  4. Terrell J.: Invisibility of the lorentz contraction. Phys. Rev. 116, 1041 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  5. Penrose R.: The Apparent shape of a relativistically moving sphere. Proc. Cambridge Phil. Soc. 55, 137 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  6. Weisskopf V.: Physics Today. 13, 24 (1960)

    Article  Google Scholar 

  7. Ma, Y.Q. and Qiu, J.W.: Extracting parton distribution functions from lattice QCD calculations. arXiv:1404.6860 [hep-ph].

  8. Bardeen, W.A.: Transverse lattice theory of quantum chromodynamics. FERMILAB-CONF-78-023-THY, FERMILAB-CONF-78-023-T

  9. Bardeen W.A., Pearson R.B., Rabinovici E.: Hadron masses in quantum chromodynamics on the transverse lattice. Phys. Rev. D 21, 1037 (1980)

    Article  ADS  Google Scholar 

  10. Burkardt, M. and Dalley, S.: The relativistic bound state problem in QCD: transverse lattice methods. Prog. Part. Nucl. Phys. 48,317 (2002) [arXiv:hep-ph/0112007]

  11. Brodsky, S.J., Hwang, D.S. and Schmidt, I.: Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering. Phys. Lett. B 530,99 (2002) [arXiv:hep-ph/0201296]

  12. Brodsky, S.J., Hoyer, P., Marchal, N., Peigne, S. and Sannino, F.: Structure functions are not parton probabilities. Phys. Rev. D 65, 114025 (2002) [arXiv:hep-ph/0104291]

  13. Pasquini B., Lorc C.: Wigner distributions in light-front quark models. Few Body Syst. 55, 287 (2014)

    Article  ADS  Google Scholar 

  14. Drell S.D., Yan T.M.: Connection of elastic electromagnetic nucleon form-factors at large Q**2 and deep inelastic structure functions near threshold. Phys. Rev. Lett. 24, 181 (1970)

    Article  ADS  Google Scholar 

  15. West G.B.: Phenomenological model for the electromagnetic structure of the proton. Phys. Rev. Lett. 24, 1206 (1970)

    Article  ADS  Google Scholar 

  16. Brodsky S.J., Drell S.D.: The anomalous magnetic moment and limits on fermion substructure. Phys. Rev. D 22, 2236 (1980)

    Article  ADS  Google Scholar 

  17. Brodsky, S.J., Hwang, D.S., Ma, B.Q. and Schmidt, I.: Light cone representation of the spin and orbital angular momentum of relativistic composite systems. Nucl. Phys. B 593, 311 (2001) [arXiv:hep-th/0003082]

  18. Kobzarev I.Y., Okun L.B.: Gravitational interaction of fermions. Zh. Eksp. Teor. Fiz. 43, 1904 (1962)

    MathSciNet  MATH  Google Scholar 

  19. Kobzarev I.Y., Okun L.B.: Gravitational interaction of fermions. Sov. Phys. JETP. 16, 1343 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Teryaev, O.V.: Spin structure of nucleon and equivalence principle. arXiv:hep-ph/9904376

  21. Brodsky S.J., Primack J.R.: The electromagnetic interactions of composite systems. Annals Phys. 52, 315 (1969)

    Article  ADS  Google Scholar 

  22. Gribov V.N., Lipatov L.N.: Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  23. Gribov V.N., Lipatov L.N.: Deep inelastic e p scattering in perturbation theory. Yad. Fiz. 15, 781 (1972)

    Google Scholar 

  24. Altarelli G., Parisi G.: Asymptotic freedom in parton language. Nucl. Phys. B. 126, 298 (1977)

    Article  ADS  Google Scholar 

  25. Dokshitzer Y.L.: Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  26. Dokshitzer Y.L.: Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. Zh. Eksp. Teor. Fiz. 73, 1216 (1977)

    Google Scholar 

  27. Lepage G.P., Brodsky S.J.: Exclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesons. Phys. Lett. B 87, 359 (1979)

    Article  ADS  Google Scholar 

  28. Lepage G.P., Brodsky S.J.: Exclusive processes in perturbative quantum chromodynamics. Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  29. Efremov A.V., Radyushkin A.V.: Factorization and asymptotical behavior of pion form-factor in QCD. Phys. Lett. B 94, 245 (1980)

    Article  ADS  Google Scholar 

  30. Efremov A.V., Radyushkin A.V.: Asymptotical behavior of pion electromagnetic form-factor in QCD. Theor. Math. Phys. 42, 97 (1980)

    Article  Google Scholar 

  31. Efremov A.V., Radyushkin A.V.: Asymptotical behavior of pion electromagnetic form-factor in QCD. Teor. Mat. Fiz. 42, 147 (1980)

    Article  Google Scholar 

  32. Brodsky, S.J. and Gardner, S.: Comment on “New Limits on Intrinsic Charm in the Nucleon from Global Analysis of Parton Distributions”. arXiv:1504.00969 [hep-ph]

  33. Pauli H.C., Brodsky S.J.: Solving field theory in one space one time dimension. Phys. Rev. D 32, 1993 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  34. Hornbostel K., Brodsky S.J., Pauli H.C.: Light cone quantized QCD in (1+1)-dimensions. Phys. Rev. D 41, 3814 (1990)

    Article  ADS  Google Scholar 

  35. Vary, J.P., Zhao, X., Ilderton, A., Honkanen, H., Maris, P. and Brodsky, S.J.: Applications of basis light-front quantization to QED. Nucl. Phys. Proc. Suppl. 251-252, 10 (2014) [arXiv:1406.1838 [nucl-th]]

  36. Brodsky, S.J., et al.: QCD and hadron physics. arXiv:1502.05728 [hep-ph]

  37. Cruz-Santiago C., Kotko P., Stasto A.M.: Scattering amplitudes in the light-front formalism. Prog. Part. Nucl. Phys. 85, 82 (2015)

    Article  ADS  MATH  Google Scholar 

  38. Brodsky S.J., Roskies R., Suaya R.: Quantum electrodynamics and renormalization theory in the infinite momentum frame. Phys. Rev. D. 8, 4574 (1973)

    Article  ADS  Google Scholar 

  39. Casher A., Susskind L.: Chiral magnetism (or magnetohadrochironics). Phys. Rev. D 9, 436 (1974)

    Article  ADS  Google Scholar 

  40. Brodsky, S.J. and Shrock, R.: Condensates in quantum chromodynamics and the cosmological constant. Proc. Nat. Acad. Sci. 108,45 (2011) [arXiv:0905.1151 [hep-th]]

  41. Brodsky, S.J., Roberts, C.D., Shrock, R. and Tandy, P.C.: Essence of the vacuum quark condensate. Phys. Rev. C 82, 022201 (2010) [arXiv:1005.4610 [nucl-th]]

  42. Srivastava, P.P. and Brodsky, S.J.: A unitary and renormalizable theory of the standard model in ghost free light cone gauge. Phys. Rev. D 66, 045019 (2002) [arXiv:hep-ph/0202141]

  43. Zee A.: Dark energy and the cosmological constant paradox. Mod. Phys. Lett. A. 23, 1336 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. D. H. Bailey and J. M Borwein, “Data vs Theory: The Mathematical Battle for the Soul of Physics”, Huffington Post, December 30, (2016)

  45. Brodsky, S.J., de Téramond, G.F. and Dosch, H.G.: Threefold Complementary Approach to Holographic QCD. Phys. Lett. B 729, 3 (2014) [arXiv:1302.4105 [hep-th]]

  46. de Alfaro V., Fubini S., Furlan G.: Conformal invariance in quantum mechanics. Nuovo Cim. A 34, 569 (1976)

    Article  ADS  Google Scholar 

  47. de Téramond, G.F. and Brodsky, S.J.: Light-front holography: a first approximation to QCD. Phys. Rev. Lett. 102,081601 (2009) [arXiv:0809.4899 [hep-ph]]

  48. de Téramond, G.F., Dosch, H.G. and Brodsky, S.J.: Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD. Phys. Rev. D 87, 075005 (2013) [arXiv:1301.1651 [hep-ph]]

  49. Trawinski, A.P., Glazek, S.D., Brodsky, S.J., de Téramond, G.F. and Dosch, H.G.: Effective confining potentials for QCD. Phys. Rev. D 90, 074017 (2014) [arXiv:1403.5651 [hep-ph]]

  50. Brodsky, S.J., de Téramond, G.F., Dosch, H.G. and Erlich, J.: Light-front holographic QCD and emerging confinement. Phys. Rept. 584, 1 (2015) [arXiv:1407.8131 [hep-ph]]

  51. Forshaw, J.R. and Sandapen, R.: An AdS/QCD holographic wavefunction for the rho meson and diffractive rho meson electroproduction. Phys. Rev. Lett. 109, 081601 (2012) [arXiv:1203.6088 [hep-ph]]

  52. Brodsky, S.J., Cao, F.G. and de Téramond, G.F.: Meson transition form factors in light-front holographic QCD. Phys. Rev. D 84, 075012 (2011) [arXiv:1105.3999 [hep-ph]]

  53. de Téramond, G.F., Dosch, H.G. and Brodsky, S.J.: Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding. Phys. Rev. D 91, 045040 (2015) [arXiv:1411.5243 [hep-ph]]

  54. Dosch, H.G., de Téramond G.F. and Brodsky, S.J.: Superconformal baryon-meson symmetry and light-front holographic QCD. Phys. Rev. D 91, 085016 (2015) [arXiv:1501.00959 [hep-th]]

  55. Dosch, H.G., de Téramond, G.F. and Brodsky, S.J.: Supersymmetry across the light and heavy-light hadronic spectrum. Phys. Rev. D 92, 074010 (2015) [arXiv:1504.05112 [hep-ph]]

  56. Fubini S., Rabinovici E.: Superconformal quantum mechanics. Nucl. Phys. B. 245, 17 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  57. Brodsky, S.J.: Novel QCD Phenomena at the LHC: The Ridge, Digluon-Initiated Subprocesses, Direct Reactions, Non-Universal Antishadowing, and Forward Higgs Production. Nucl. Part. Phys. Proc. 258-259, 23–30 (2015) [arXiv:1410.0404 [hep-ph]]

  58. Liu, T. and Ma, B.Q.: Baryon properties from light-front holographic QCD. Phys. Rev. D 92, no. 9, 096003 (2015) doi:10.1103/PhysRevD.92.096003 [arXiv:1510.07783 [hep-ph]]

  59. Bjorken, J.D., Brodsky, S.J. and Goldhaber, A. Scharff: Possible multiparticle ridge-like correlations in very high multiplicity proton-proton collisions. Phys. Lett. B 726, 344 (2013) [arXiv:1308.1435 [hep-ph]]

  60. Grunberg G.: Renormalization group improved perturbative QCD. Phys. Lett. B. 95, 70 (1980)

    Article  ADS  Google Scholar 

  61. Grunberg G.: Renormalization group improved perturbative QCD. Phys. Lett. B. 110, 501 (1982)

    Article  Google Scholar 

  62. Brodsky, S.J. and Lu, H.J.: Commensurate scale relations in quantum chromodynamics. Phys. Rev. D 51, 3652 (1995) [arXiv:hep-ph/9405218]

  63. Brodsky, S.J., de Téramond G.F. and Deur, A.: Nonperturbative QCD coupling and its \({\beta}\)-function from light-front holography. Phys. Rev. D 81, 096010 (2010) [arXiv:1002.3948 [hep-ph]]

  64. Deur A., Burkert V., Chen J.P., Korsch W.: Experimental determination of the effective strong coupling constant. Phys. Lett. B 650, 244 (2007)

    Article  ADS  Google Scholar 

  65. Deur A., Burkert V., Chen J.P., Korsch W.: Experimental determination of the effective strong coupling constant. Phys. Lett. B 665, 349 (2008)

    Article  ADS  Google Scholar 

  66. Deur, A., Brodsky, S.J. and de T’eramond, G.F.: Connecting the hadron mass scale to the fundamental mass scale of quantum chromodynamics. Phys. Lett. B 750, 528 (2015) [arXiv:1409.5488 [hep-ph]]

  67. Brodsky, S.J., de Téramond, G.F., Deur, A., Dosch, H.G.: The light-front schršdinger equation and the determination of the perturbative QCD scale from color confinement: a first approximation to QCD. Few Body Syst. 56, 621 (2015) [arXiv:1410.0425 [hep-ph]]

  68. Olive K.A. et al.: [Particle Data Group Collaboration], Review of particle physics. Chin. Phys. C. 38, 090001 (2014)

    Article  ADS  Google Scholar 

  69. Zee, A.: Quantum field theory in a nutshell. Princeton University Press, Princeton (2010)

  70. Deur, A., Brodsky, S.J., de Téramond, G.F.: On the interface between perturbative and nonperturbative QCD (2016) [arXiv:1601.06568 [hep-ph]]

  71. Brodsky, S.J. and de Teramond, G.F.: Light-front holography and QCD hadronization at the amplitude level. arXiv:0901.0770 [hep-ph]

  72. Cruz-Santiago, C., Kotko, P. and Stasto, A.: Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines. Nucl. Phys. B 895, 132 (2015) [arXiv:1503.02066 [hep-ph]]

  73. Vary, J.P. et al.: Hamiltonian light-front field theory in a basis function approach. Phys. Rev. C 81, 035205 (2010) [arXiv:0905.1411 [nucl-th]]

  74. Brodsky, S.J., Roberts, C.D., Shrock, R. and Tandy, P.C.: Confinement contains condensates. Phys. Rev. C 85, 065202 (2012) [arXiv:1202.2376 [nucl-th]]

  75. Smirnov, A.V., Smirnov, V.A. and Steinhauser, M.: Three-loop static potential. Phys. Rev. Lett. 104, 112002 (2010) [arXiv:0911.4742 [hep-ph]]

  76. Wu, X.G., Brodsky, S.J. and Mojaza, M.: The renormalization scale-setting problem in QCD. Prog. Part. Nucl. Phys. 72, 44 (2013) [arXiv:1302.0599 [hep-ph]]

  77. Brodsky S.J., Lepage G.P., Mackenzie P.B.: On the elimination of scale ambiguities in perturbative quantum chromodynamics. Phys. Rev. D 28, 228 (1983)

    Article  ADS  Google Scholar 

  78. Mojaza, M., Brodsky, S.J. and Wu, X.G.: Systematic all-orders method to eliminate renormalization-scale and scheme ambiguities in perturbative QCD. Phys. Rev. Lett. 110, 192001 (2013) [arXiv:1212.0049 [hep-ph]]

  79. Kataev, A.L. and Mikhailov, S.V.: \({\beta}\)-expansion in QCD, its conformal symmetry limit: theory + applications. Nucl. Part. Phys. Proc. 258-259, 45 (2015) [arXiv:1410.0554 [hep-ph]]

  80. Kataev, A.L. and Mikhailov, S.V.: Generalization of the Brodsky-Lepage-Mackenzie optimization within the \({\beta}\)-expansion and the principle of maximal conformality. Phys. Rev. D 91(1),014007 (2015) [arXiv:1408.0122 [hep-ph]]

  81. Kataev, A.L.: The generalized BLM approach to fix scale-dependence in QCD: the current status of investigations. J. Phys. Conf. Ser. 608(1),012078 (2015) [arXiv:1411.2257 [hep-ph]]

  82. Brodsky, S.J. and Wu, X.G.: Eliminating the renormalization scale ambiguity for top-pair production using the principle of maximum conformality. Phys. Rev. Lett. 109, 042002 (2012) [arXiv:1203.5312 [hep-ph]]

  83. Brodsky S.J., Wu X.G.: Application of the principle of maximum conformality to top-pair production. Phys. Rev. D. 86, 014021 (2012)

    Article  ADS  Google Scholar 

  84. Brodsky, S.J. and Wu, X.G. (2013) Application of the principle of maximum conformality to top-pair production. Phys. Rev. D. 87, 099902 [arXiv:1204.1405 [hep-ph]]

  85. Wu, X.G., Wang, S.Q. and Brodsky, S.J.: The importance of proper renormalization scale-setting for testing QCD at colliders. Physics. 11, 111201 (2016) [arXiv:1508.02332 [hep-ph]]

  86. Wang, S.Q., Wu, X.G., Si, Z.G. and Brodsky, S.J.: Predictions for the top-quark forward-backward asymmetry at high invariant pair mass using the principle of maximum conformality. arXiv:1508.03739 [hep-ph]

  87. Liuti, S. Rajan, A., Courtoy, A., Goldstein, G.R. and Hernandez, J.O.Gonzalez: Partonic picture of GTMDs. Int. J. Mod. Phys. Conf. Ser. 25, 1460009 (2014) [arXiv:1309.7029 [hep-ph]]

  88. Mondal, C. and Chakrabarti, D.: Generalized parton distributions and transverse densities in a light-front quark-diquark model for the nucleons. Eur. Phys. J. C 75, no. 6, 261 (2015) [arXiv:1501.05489 [hep-ph]]

  89. Lorce, C., Pasquini, B. and Vanderhaeghen, M.: Unified framework for generalized and transverse-momentum dependent parton distributions within a 3Q light-cone picture of the nucleon. JHEP. 1105, 041 (2011) [arXiv:1102.4704 [hep-ph]]

  90. Brodsky, S.J.: Dynamic versus static structure functions and novel diffractive effects in QCD. AIP Conf. Proc. 1105, 315 (2009) [arXiv:0811.0875 [hep-ph]]

  91. Brodsky, S.J.: Dynamic versus static hadronic structure functions. Nucl. Phys. A 827, 327C (2009) [arXiv:0901.0781 [hep-ph]]

  92. Brodsky, S.J., Pasquini, B., Xiao, B.W. and Yuan, F.: Phases of augmented hadronic light-front wave functions. Phys. Lett. B 687, 327 (2010) [arXiv:1001.1163 [hep-ph]]

  93. Brodsky, S.J., Hwang, D.S., Kovchegov, Y.V., Schmidt, I. and Sievert, M.D.: Single-spin asymmetries in semi-inclusive deep inelastic scattering and drell-yan processes. Phys. Rev. D 88, 014032 (2013) [arXiv:1304.5237 [hep-ph]]

  94. Brodsky S.J., Lu H.J.: Shadowing and antishadowing of nuclear structure functions. Phys. Rev. Lett. 64, 1342 (1990)

    Article  ADS  Google Scholar 

  95. Brodsky, S.J., Schmidt, I. and Yang, J.J.: Nuclear antishadowing in neutrino deep inelastic scattering. Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279]

  96. Schienbein, I., Yu, J.Y., Keppel, C., Morfin, J.G., Olness, F. and Owens, J.F.: Nuclear parton distribution functions from neutrino deep inelastic scattering. Phys. Rev. D 77, 054013 (2008) [arXiv:0710.4897 [hepth]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley J. Brodsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodsky, S.J. Light-Front Holography, Color Confinement, and Supersymmetric Features of QCD. Few-Body Syst 57, 703–715 (2016). https://doi.org/10.1007/s00601-016-1070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1070-8

Keywords

Navigation