Skip to main content
Log in

Dirac Equation for Scalar, Vector and Tensor Generalized Cornell Interaction

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We consider spin and pseudospin symmetry limits of Dirac equation in the presence of scalar, vector and tensor generalized Cornell interaction and report the solutions via the quasi-exact analytical ansatz approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ginocchio J.N.: Relativistic harmonic oscillator with spin symmetry. Phys. Rev. C 69, 034318 (2004)

    Article  ADS  Google Scholar 

  2. Ginocchio J.N.: Pseudospin as a relativistic symmetry. Phys. Rev. Lett. 78, 436 (1997)

    Article  ADS  Google Scholar 

  3. Page P.R., Goldman T., Ginocchio J.N.: Relativistic symmetry suppresses quark spin-orbit splitting. Phys. Rev. Lett. 86, 204 (2001)

    Article  ADS  Google Scholar 

  4. Ginocchio J.N.: Relativistic symmetries in nuclei and hadrons. Phys. Rep. 414, 165 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Lisboa R., Malheiro M., Alberto P., Fiolhais M., de Castro A.S.: Spin and pseudospin symmetries in the antinucleon spectrum of nuclei. Phys. Rev. C 81, 064324 (2010)

    Article  ADS  Google Scholar 

  6. Alberto P., de Castro A.S., Malheiro M.: Spin and pseudospin symmetries of the Dirac equation with confining central potentials. Phys. Rev. C 87, 031301(R) (2013)

    Article  ADS  Google Scholar 

  7. Troltenier D., Bahri C., Draayer J.P.: Generalized pseudo-SU(3) model and pairing. Nucl. Phys. A 586, 53 (1995)

    Article  ADS  Google Scholar 

  8. Cooper F., Khare A., Sukhatme U.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dong S.H.: Factorization Method in Quantum Mechanics. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  10. Nikiforov A.F., Uvarov V.B.: Special Functions of Mathematical Physics. Birkhauser, Basel (1988)

    Book  MATH  Google Scholar 

  11. Witten E.: Dynamical breaking of supersymmetry. Nucl. Phys. B 188, 513 (1981)

    Article  ADS  MATH  Google Scholar 

  12. Candemir, N., Bayrak, O.: Bound states of the Dirac equation for the generalized Woods–Saxon potential in pseudospin and spin symmetry limits. Mod. Phys. Lett. A doi:10.1142/S0217732314501806

  13. Castilho W.M., de Castro A.S.: Scattering and bound states of fermions in a mixed vector–scalar smooth step potential. Ann. Phys. 346, 164 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wei G.F., Dong S.H.: Pseudospin symmetry in the relativistic Manning–Rosen potential including a Pekeris-type approximation to the pseudo-centrifugal term. Phys. Lett. B 686, 288 (2010)

    Article  ADS  Google Scholar 

  15. Ortakaya S.: Pseudospin symmetry in position-dependent mass Dirac-Coulomb problem by using Laplace Transform and Convolution Integral . Few-Body Sys. 54, 2073 (2013)

    Article  ADS  Google Scholar 

  16. Hassanabadi H., Maghsoodi E., Zarrinkamar S.: Spin and pseudospin symmetries of Dirac Equation and the Yukawa potential as the tensor interaction. Commun. Theor. Phys. 58, 807 (2012)

    Article  ADS  MATH  Google Scholar 

  17. Zarrinkamar S., Rajabi A.A., Hassanabadi H.: Dirac equation for the harmonic scalar and vector potentials and linear plus coulomb-like tensor potential; the SUSY approach. Ann. Phys. (N. Y.) 325, 2522 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. de Castro A.S., Alberto P.: Spin and pseudospin symmetries in the Dirac equation with central Coulomb potentials. Phys. Rev. A 86, 032122 (2012)

    Article  ADS  Google Scholar 

  19. Andreev O., Zakharov V.I.: Heavy-quark potentials and AdS/QCD. Phys. Rev. D 74, 025023 (2006)

    Article  ADS  Google Scholar 

  20. White C.D.: The Cornell potential from general geometries in AdS / QCD. Phys. Lett. B 652, 79 (2007)

    Article  ADS  Google Scholar 

  21. Hassanabadi H., Yazarloo B.H., Zarrinkamar S., Rajabi A.A.: Duffin-Kemmer-Petiau equation under a scalar Coulomb interaction. Phys. Rev. C 84, 064003 (2011)

    Article  ADS  Google Scholar 

  22. Dong S.H.: Correlations of spin states for icosahedral double group. Int. J. Theor. Phys. 40, 569 (2001)

    Article  MATH  Google Scholar 

  23. Turbiner A.V.: Quasi-exactly-solvable problems and sl(2) algebra. Commun. Math. Phys. 118, 467 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Aghaei S. et al.: Dirac equation and some quasi-exact solvable potentials in the Turbiner’s classification. Commun. Theor. Phys. 60, 296 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ho C.L.: Quasi-exact solvability of Dirac equation with Lorentz scalar potential. Ann. Phys. 321, 2170 (2006)

    Article  ADS  MATH  Google Scholar 

  26. Debergh N., Van den Bossche B.: Differential realizations of polynomial algebras in finite-dimensional spaces of monomials. Ann. Phys. 308, 605 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Panahi H., Zarrinkamar S., Baradaran M.: Solutions of the D-dimensional Schrodinger equation with Killingbeck potential: lie algebraic approach. Chin. Phys. B 24, 060301 (2015)

    Article  ADS  Google Scholar 

  28. Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S., Rahimov, H.: Dirac equation under scalar, vector, and tensor cornell interactions. Adv. High Energy Phys. (2012) Article ID 707041

  29. Castro L.B.: Relating pseudospin and spin symmetries through chiral transformation with tensor interaction. Phys. Rev. C 86, 052201 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zarrinkamar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarrinkamar, S., Panahi, H., Rezaei, M. et al. Dirac Equation for Scalar, Vector and Tensor Generalized Cornell Interaction. Few-Body Syst 57, 109–120 (2016). https://doi.org/10.1007/s00601-015-1033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-1033-5

Keywords

Navigation