Skip to main content
Log in

Universality of Effective Potentials in Models of Mesons

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Many simple pictures of hadrons have been inspired by QCD. They are formulated in the instant-form (IF) of dynamics as well as in the front-form (FF). One can observe that nearly all considerations in the IF lead to the conclusion that the potential between quarks and antiquarks should be linear at large distances. In contrast, the FF formulation favors a quadratic potential. We discuss examples and show that the linear IF confinement potential corresponds to the quadratic FF potential. An important tool in our discussion is the WKB method which allows one to relate the maximum distances of separation between quarks within mesons in different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson, K.G., Robertson, D.G.: Light front QCD and the constituent quark model. World Scientific, Singapore (1995), Ed. S. D. Głazek, ISBN 981-02-2174-6. arXiv:hep-ph/9411007

  2. Trawiński, A.P., Głazek, S.D., Brodsky, S.J., de Téramond, G.F., Dosch, H.G.: Effective confining potentials for QCD. Phys. Rev. D 90, 074017 (2014). arXiv:1403.5651 [hep-ph]

  3. Dirac P.A.M.: Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)

    Article  MathSciNet  ADS  Google Scholar 

  4. Wentzel G.: Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Zeits. f. Phys. 38, 518 (1926)

    Article  ADS  Google Scholar 

  5. Kramers H.A.: Wellenmechanik und halbzahlige Quantisierung. Zeits. f. Phys. 39, 828 (1926)

    Article  ADS  MATH  Google Scholar 

  6. Brillouin L.: La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives. Comptes Rendus 183, 24 (1926)

    Google Scholar 

  7. Berestetsky, V.B., Terentev, M.V.: Light front dynamics and nucleons from relativistic quarks. Sov. J. Nucl. Phys. 24, 547 [Yad. Fiz. 24 (1976) 1044] (1976)

  8. Bakker B.L.G., Kondratyuk L.A., Terentev M.V.: On the formulation Of two-body and three-body relativistic equations employing light front dynamics. Nucl. Phys. B 158, 497 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  9. Fishbane P.M., Namysłowski J.M.: Noninstantaneous O(v/c) relativistic effects in bound states and a covariant Schrodinger equation. Phys. Rev. D 21, 2406 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  10. Brodsky, S.J., Pauli, H.C., Pinsky, S.S.: Quantum chromodynamics and other field theories on the light cone. Phys. Rep. 301, 299 (1998). arXiv:hep-ph/9705477

  11. Wilson K.G.: Confinement of Quarks. Phys. Rev. D 10, 2445 (1974)

    Article  ADS  Google Scholar 

  12. Eichten, E., Gottfried, K., Kinoshita, T., Lane, K.D., Yan, T.M.: Charmonium: the model. Phys. Rev. D 17, 3090 (1978) [Erratum Phys. Rev. D 21 (1980) 313]

  13. Kawanai, T., Sasaki, S.: Charmonium potential from full lattice QCD. Phys. Rev. D 85, 091503 (2012). arXiv:1110.0888 [hep-lat]

  14. Luscher M., Symanzik K., Weisz P.: Anomalies of the free loop wave equation in the WKB approximation. Nucl. Phys. B 173, 365 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  15. Arvis J.F.: The exact \({q \bar{q}}\) potential in Nambu string theory. Phys. Lett. B 127, 106 (1983)

    Article  ADS  Google Scholar 

  16. Bali, G.S.: QCD forces and heavy quark bound states. Phys. Rep. 343, 1 (2001). arXiv:hep-ph/0001312

  17. Regge T.: Introduction to complex orbital momenta. Nuovo Cim. 14, 951 (1959)

    Article  MathSciNet  Google Scholar 

  18. Regge T.: Bound states, shadow states and Mandelstam representation. Nuovo Cim. 18, 947 (1960)

    Article  MathSciNet  Google Scholar 

  19. Dosch H.G., Simonov Y.A.: The area law of the Wilson Loop and Vacuum field correlators. Phys. Lett. B 205, 339 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  20. Di Giacomo, A., Dosch, H.G., Shevchenko, V.I., Simonov, Y.A.: Field correlators in QCD: theory and applications. Phys. Rep. 372, 319 (2002). arXiv:hep-ph/0007223

  21. D’Elia, M., Di Giacomo, A., Meggiolaro, E.: Field strength correlators in full QCD. Phys. Lett. B 408, 315 (1997). arXiv:hep-ph/9705032

  22. de Téramond, G.F., Brodsky, S.J.: Hadronic spectrum of a holographic dual of QCD. Phys. Rev. Lett. 94, 201601 (2005). arXiv:hep-ph/0501022

  23. Brodsky, S.J., de Téramond, G.F., Dosch, H.G., Erlich, J.: Light-front holographic QCD and emerging confinement. arXiv:hep-ph/1407.8131

  24. Głazek, S.D., Trawiński, A.P.: Model of the AdS/QFT duality. Phys. Rev. D 88(10), 105025 (2013). arXiv:1307.2059 [hep-ph]

  25. de Téramond, G.F., Brodsky, S.J.: Light-front holography and gauge/gravity duality: the light meson and Baryon spectra. Nucl. Phys. Proc. Suppl. 199, 89 (2010). arXiv:0909.3900 [hep-ph]

  26. Brodsky, S.J., Cao, F.G., de Téramond, G.F.: Evolved QCD predictions for the meson-photon transition form factors. Phys. Rev. D 84, 033001 (2011). arXiv:1104.3364 [hep-ph]

  27. Brodsky, S.J., Cao, F.G., de Téramond, G.F.: Meson transition form factors in light-front holographic QCD. Phys. Rev. D 84, 075012 (2011). arXiv:1105.3999 [hep-ph]

  28. Brodsky, S.J., de Téramond, G.F., Deur, A.: Nonperturbative QCD coupling and its \({\beta}\) -function from light-front holography. Phys. Rev. D 81, 096010 (2010). arXiv:1002.3948 [hep-ph]

  29. Morgunov V.L., Shevchenko V.I., Simonov Y.A.: Meson spectrum on the light cone. Phys. Lett. B 416, 433 (1998)

    Article  ADS  MATH  Google Scholar 

  30. Głazek, S.D.: Reinterpretation of gluon condensate in dynamics of hadronic constituents. Acta Phys. Polon. B 42, 1933 (2011). arXiv:1106.6100 [hep-th]

  31. Narison, S.: Heavy quarkonia mass splittings in QCD: Gluon condensate, alpha-s and 1/m expansion. Phys. Lett. B 387, 162 (1996). arXiv:hep-ph/9512348

  32. Narison, S.: Gluon Condensates and m c,b from QCD-moments and their ratios to Order \({\alpha_s^3}\) and \({\langle G^4 \rangle}\). Phys. Lett. B 706, 412 (2012). arXiv:1105.2922 [hep-ph]

  33. Shifman M.A., Vainshtein A.I., Zakharov V.I.: QCD and resonance physics. Sum Rules Nucl. Phys. B 147, 385 (1979)

    Article  ADS  MATH  Google Scholar 

  34. Casher A., Susskind L.: Chiral magnetism (or magnetohadrochironics). Phys. Rev. D 9, 436 (1974)

    Article  ADS  MATH  Google Scholar 

  35. Kaku M., Kikkawa K.: The field theory of relativistic strings, Pt. 1. trees. Phys. Rev. D 10, 1110 (1974)

    Article  ADS  Google Scholar 

  36. Spradlin, M., Volovich, A.: Light cone string field theory in a plane wave. arXiv:hep-th/0310033

  37. Frolov, S., Plefka, J., Zamaklar, M.: The AdS(5)\({\times}\) S**5 superstring in light-cone gauge and its Bethe equations. J. Phys. A 39, 13037 (2006). arXiv:hep-th/0603008

  38. Metsaev, R.R., Thorn, C.B., Tseytlin, A.A.: Light cone superstring in AdS space-time. Nucl. Phys. B 596, 151 (2001) arXiv:hep-th/0009171

  39. Dubin, A.Y., Kaidalov, A.B., Simonov, Y.A.: The QCD string with quarks. 1. Spinless quarks. Phys. Atom. Nucl. 56, 1745 (1993) (Yad. Fiz. 56 (1993) 213). arXiv:hep-ph/9311344

  40. Dubin, A.Y., Kaidalov, A.B., Simonov, Y.A.: The QCD string with quarks. 2. Light cone Hamiltonian. Phys. Atom. Nucl. 58, 300 (1995). (Yad. Fiz. 58N2 (1995) 348). arXiv:hep-ph/9408212

  41. Dubin A.Y., Kaidalov A.B., Simonov Y.A.: Dynamical regimes of the QCD string with quarks. Phys. Lett. B 323, 41 (1994)

    Article  ADS  Google Scholar 

  42. Dubin A.Y., Kaidalov A.B., Simonov Y.A.: Light cone formalism for QCD string with quarks. Phys. Lett. B 343, 310 (1995)

    Article  ADS  Google Scholar 

  43. Chung P.L., Coester F., Polyzou W.N.: Charge form-factors of quark model pions. Phys. Lett. B 205, 545 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz P. Trawiński.

Additional information

Work in collaboration with S. J. Brodsky, S. D. Głazek, G. F. de Téramond, H. G. Dosch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trawiński, A.P. Universality of Effective Potentials in Models of Mesons. Few-Body Syst 56, 571–577 (2015). https://doi.org/10.1007/s00601-015-1013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-1013-9

Keywords

Navigation