Skip to main content
Log in

Strongly Interacting Few-Fermion Systems in a Trap

  • Published:
Few-Body Systems Aims and scope Submit manuscript


Few- and many-fermion systems on the verge of stability, and consisting of strongly interacting particles, appear in many areas of physics. The theoretical modeling of such systems is a very difficult problem. In this work we present a theoretical framework that is based on the rigged Hilbert space formulation. The few-body problem is solved by exact diagonalization using a basis in which bound, resonant, and non-resonant scattering states are included on an equal footing. Current experiments with ultracold atoms offer a fascinating opportunity to study universal properties of few-body systems with a high degree of control over parameters such as the external trap geometry, the number of particles, and even the interaction strength. In particular, particles can be allowed to tunnel out of the trap by applying a magnetic-field gradient that effectively lowers the potential barrier. The result is a tunable open quantum system that allows detailed studies of the tunneling mechanism. In this Paper we introduce our method and present results for the decay rate of two distinguishable fermions in a one-dimensional trap as a function of the interaction strength. In particular, we present for the first time several technical and numerical details of our approach, recently published in Lundmark et al. (Phys Rev A 91:041601, 2015). We also show results from a careful analysis of the numerical convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Serwane F., Zürn G., Lompe T., Ottenstein T.B., Wenz A.N., Jochim S.: Deterministic preparation of a tunable few-fermion system. Science 332(6027), 336–338 (2011)

    Article  ADS  Google Scholar 

  2. Zürn G., Wenz A.N., Murmann S., Bergschneider A., Lompe T., Jochim S.: Pairing in few-fermion systems with attractive interactions. Phys. Rev. Lett. 111(17), 175302 (2013)

    Article  ADS  Google Scholar 

  3. Chin C., Grimm R., Julienne P., Tiesinga E.: Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82(2), 1225–1286 (2010)

    Article  ADS  Google Scholar 

  4. Olshanii M.: Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81(5), 938–941 (1998)

    Article  ADS  Google Scholar 

  5. Zürn G., Lompe T., Wenz A.N., Jochim S., Julienne P.S., Hutson J.M.: Precise characterization of Li-6 feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110(13), 135301 (2013)

    Article  ADS  Google Scholar 

  6. Lundmark R., Forssén C., Rotureau J.: Tunneling theory for tunable open quantum systems of ultracold atoms in one-dimensional traps. Phys. Rev. A 91, 041601 (2015)

    Article  ADS  Google Scholar 

  7. de la Madrid R.: The role of the rigged Hilbert space in quantum mechanics. Eur. J. Phys. 26(2), 287–312 (2005)

    Article  ADS  Google Scholar 

  8. Michel N., Nazarewicz W., Płoszajczak M., Bennaceur K.: Gamow shell model description of neutron-rich nuclei. Phys Rev Lett 89(4), 042502 (2002)

    Article  ADS  Google Scholar 

  9. Rotureau J., Michel N., Nazarewicz W., Płoszajczak M., Dukelsky J.: Density matrix renormalization group approach for many-body open quantum systems. Phys. Rev. Lett. 97(11), 110603 (2006)

    Article  ADS  Google Scholar 

  10. Hagen G., Hjorth-Jensen M., Michel N.: Gamow shell model and realistic nucleon-nucleon interactions. Phys. Rev. C 73(6), 064307 (2006)

    Article  ADS  Google Scholar 

  11. Michel N., Nazarewicz W., Płoszajczak M., Vertse T.: Shell model in the complex energy plane. J. Phys. G 36(1), 013101 (2009)

    Article  ADS  Google Scholar 

  12. Papadimitriou G., Kruppa A.T., Michel N., Nazarewicz W., Ploszajczak M., Rotureau J.: Charge radii and neutron correlations in helium halo nuclei. Phys. Rev. C 84(5), 051304 (2011)

    Article  ADS  Google Scholar 

  13. Rotureau J., van Kolck U.: Effective field theory and the Gamow shell model. The 6He halo nucleus. Few-Body Syst. 54(5), 725–735 (2013)

    Article  ADS  Google Scholar 

  14. Fossez K., Michel N., Nazarewicz W., Płoszajczak M.: Bound states of dipolar molecules studied with the Berggren expansion method. Phys. Rev. A 87(4), 042515 (2013)

    Article  ADS  Google Scholar 

  15. Berggren T.: On the use of resonant states in eigenfunction expansions of scattering and reaction amplitudes. Nucl. Phys. A 109, 265–287 (1968)

    Article  ADS  Google Scholar 

  16. Newton R.G.: Analytic Properties of Radial Wave Functions. J. Math. Phys. 1, 319–347 (1960)

    Article  ADS  MATH  Google Scholar 

  17. Gamow G.: Zur Quantentheorie des Atomkernes. Zeitschrift für Physik 51(3), 204–212 (1928)

    Article  ADS  MATH  Google Scholar 

  18. Davidson E.R.: Iterative calculation of a few of lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17(1), 87–94 (1975)

    Article  ADS  MATH  Google Scholar 

  19. Michel N., Nazarewicz W., Ploszajczak M., Okolowicz J.: Gamow shell model description of weakly bound nuclei and unbound nuclear states. Phys. Rev. C 67(5), 054311 (2003)

    Article  ADS  Google Scholar 

  20. Grigorenko L.V., Zhukov M.V.: Two-proton radioactivity and three-body decay. III. Integral formulas for decay widths in a simplified semianalytical approach. Phys. Rev. C 76(1), 014008 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christian Forssén.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forssén, C., Lundmark, R., Rotureau, J. et al. Strongly Interacting Few-Fermion Systems in a Trap. Few-Body Syst 56, 837–844 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: