Few-Body Systems

, Volume 56, Issue 11–12, pp 737–744 | Cite as

Low-Energy Reactions Involving Halo Nuclei: A Microscopic Version of CDCC

Article

Abstract

We extend the continuum discretized coupled channel method (CDCC) to a microscopic version, where the projectile is described by a microscopic cluster model. This generalization (MCDCC) only relies on nucleon-target interactions, and therefore presents an important predictive power. We briefly present an outline of the model, and provide recent examples with 7Li and 8B elastic scattering on different light and heavy targets. We show that the model can be applied to high energies, as well as to low energies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tanihata I., Savajols H., Kanungo R.: Recent experimental progress in nuclear halo structure studies. Prog. Part Nucl. Phys. 68, 215 (2013)CrossRefADSGoogle Scholar
  2. 2.
    Suzuki Y., Lovas R.G., Yabana K., Varga K.: Structure and Reactions of Light Exotic Nuclei. Taylor & Francis, London (2003)CrossRefGoogle Scholar
  3. 3.
    Kamimura M., Yahiro M., Iseri Y., Sakuragi S., Kameyama H., Kawai M.: Recent experimental progress in nuclear halo structure studies. Prog. Theor. Phys. Suppl. 89, 1 (1986)CrossRefADSGoogle Scholar
  4. 4.
    Austern N., Iseri Y., Kamimura M., Kawai M., Rawitscher G., Yahiro M.: Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions. Phys. Rep. 154, 125 (1987)CrossRefADSGoogle Scholar
  5. 5.
    Rawitscher G.H.: Effect of deuteron breakup on elastic deuteron - nucleus scattering. Phys. Rev. C. 9, 2210 (1974)CrossRefADSGoogle Scholar
  6. 6.
    Tostevin J.A., Nunes F.M., Thompson I.J.: Calculations of three-body observables in 8B breakup. Phys. Rev. C. 63, 024617 (2001)CrossRefADSGoogle Scholar
  7. 7.
    Di Pietro A., Scuderi V., Moro A.M., Acosta L., Amorini F., Borge M.J.G., Figuera P., Fisichella M., Fraile L.M., Gomez-Camacho J., Jeppesen H., Lattuada M., Martel I., Milin M., Musumarra A., Papa M., Pellegriti M.G., Perez-Bernal F., Raabe R., Randisi G., Rizzo F., Scalia G., Tengblad O., Torresi D., Vidal A.M., Voulot D., Wenander F., Zadro M.: Experimental study of the collision 11Be + 64Zn around the Coulomb barrier. Phys. Rev. C. 85, 054607 (2012)CrossRefADSGoogle Scholar
  8. 8.
    Matsumoto T., Hiyama E., Ogata K., Iseri Y., Kamimura M., Chiba S., Yahiro M.: Continuum-discretized coupled-channels method for four-body nuclear breakup in 6He6 +  12 C12 scattering. Phys. Rev. C. 70, 061601 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Cubero M., Fernández-García J.P., Rodríguez-Gallardo M., Acosta L., Alcorta M., Alvarez M.A.G., Borge M.J.G., Buchmann L., Diget C.A., Falou H.A., Fulton B.R., Fynbo H.O.U., Galaviz D., Gómez-Camacho J., Kanungo R., Lay J.A., Madurga M., Martel I., Moro A.M., Mukha I., Nilsson T., Sánchez-Benítez A.M., Shotter A., Tengblad O., Walden P.: Do Halo Nuclei Follow Rutherford Elastic Scattering at Energies Below the Barrier? The Case of 11Li. Phys. Rev. Lett. 109, 262701 (2012)CrossRefADSGoogle Scholar
  10. 10.
    Descouvemont P., Hussein M.: Towards a Microscopic Description of Reactions Involving Exotic Nuclei. Phys. Rev. Lett. 111, 082701 (2013)CrossRefADSGoogle Scholar
  11. 11.
    Tang Y.C., LeMere M., Thompsom D.R.: Resonating-group method for nuclear many-body problems. Phys. Rep. 47, 167 (1978)CrossRefADSGoogle Scholar
  12. 12.
    Descouvemont P., Dufour M.: Clusters in Nuclei, vol. 2. Springer, Berlin (2012)Google Scholar
  13. 13.
    Koning A.J., Delaroche J.P.: Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231 (2003)CrossRefADSGoogle Scholar
  14. 14.
    Moro A.M., Arias J.M., Gómez-Camacho J., Pérez-Bernal F.: Analytical transformed harmonic oscillator basis for continuum discretized coupled channels calculations. Phys. Rev. C 80, 054605 (2009)CrossRefADSGoogle Scholar
  15. 15.
    Yahiro M., Matsumoto T., Minomo K., Sumi T., Watanabe S.: Recent Development of CDCC. Prog. Theor. Phys. Suppl. 196, 87 (2012)CrossRefADSGoogle Scholar
  16. 16.
    Rodríguez-Gallardo M., Arias J.M., Gómez-Camacho J., Johnson R.C., Moro A.M., Thompson I.J., Tostevin J.A.: Four-body continuum-discretized coupled-channels calculations using a transformed harmonic oscillator basis. Phys. Rev. C 77, 064609 (2008)CrossRefADSGoogle Scholar
  17. 17.
    Horiuchi H.: Kernels of GCM, RGM and OCM and Their Calculation Methods. Prog. Theor. Phys. Suppl. 62, 90 (1977)CrossRefADSGoogle Scholar
  18. 18.
    Wildermuth K., Tang Y.C.: A Unified Theory of the Nucleus. Vieweg, Braunschweig (1977)CrossRefGoogle Scholar
  19. 19.
    Brink, D.: Proceedings of International School “Enrico Fermi” 36, Varenna 1965, Academic Press, New York, p. 247 (1966)Google Scholar
  20. 20.
    Satchler G.R., Love W.G.: Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55, 183 (1979)CrossRefADSGoogle Scholar
  21. 21.
    Khoa D.T., Satchler G.: Generalized folding model for elastic and inelastic nucleus-nucleus scattering using realistic density dependent nucleon-nucleon interaction. Nucl. Phys. A 668, 3 (2000)CrossRefADSGoogle Scholar
  22. 22.
    Baye D., Descouvemont P., Timofeyuk N.K.: Matter densities of 8B and 8Li in a microscopic cluster model and the proton-halo problem of 8B. Nucl. Phys. A 577, 624 (1994)CrossRefADSGoogle Scholar
  23. 23.
    Descouvemont P., Baye D.: The R-matrix Theory. Rep. Prog. Phys. 73, 036301 (2010)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Druet T., Baye D., Descouvemont P., Sparenberg J.M.: CDCC calculations with the Lagrange-mesh technique. Nucl. Phys. A 845, 88 (2010)CrossRefADSGoogle Scholar
  25. 25.
    Martel I., Gómez-Camacho J., Rusek K., Tungate G.: Double-folding model analysis of the threshold anomaly in the scattering of polarized 7Li from 208Pb. Nucl. Phys. A 605(3), 417 (1996)CrossRefADSGoogle Scholar
  26. 26.
    Baye D., Pecher N.: The spin-orbit interaction. Bull. Cl. Sci. Acad. R. Belg. 67, 835 (1981)Google Scholar
  27. 27.
    Roberts M.L., Felsher P.D., Weisel G.J., Chen Z., Howell C.R., Tornow W., Walter R.L., Horen D.J.: Measurement of A y(θ) for n208Pb from 6 to 10 MeV and the neutron-nucleus interaction over the energy range from bound states at −17 MeV up to scattering at 40 MeV. Phys. Rev. C 44, 2006 (1991)CrossRefADSGoogle Scholar
  28. 28.
    Parkar V.V., Jha V., Roy B.J., Santra S., Ramachandran K., Shrivastava A., Chatterjee A., Jain S.R., Jain A.K., Kailas S.: Dipole polarizability of 7 Li from precision measurement of the elastic scattering on 208 Pb below the Coulomb barrier. Phys. Rev. C 78, 021601 (2008)CrossRefADSGoogle Scholar
  29. 29.
    Nadasen A., Brusoe J., Farhat J., Stevens T., Williams J., Nieman L., Winfield J.S., Warner R.E., Becchetti F.D., Jänecke J.W., Annakkage T., Bajema J., Roberts D., Govinden H.S.: Unique potentials for the elastic scattering of 350 MeV 7 Li from 12 C and 28 Si. Phys. Rev. C 52, 1894 (1995)CrossRefADSGoogle Scholar
  30. 30.
    Ogata K., Yahiro M., Iseri Y., Matsumoto T., Kamimura M.: New coupled-channel approach to nuclear and Coulomb breakup reactions. Phys. Rev. C 68, 064609 (2003)CrossRefADSGoogle Scholar
  31. 31.
    Pinilla E.C., Descouvemont P.: Microscopic description of 7Li in 7Li + 12C and 7Li + 28Si elastic scattering at high energies. Phys. Rev. C 89, 054615 (2014)CrossRefADSGoogle Scholar
  32. 32.
    Weppner S.P., Penney R.B., Diffendale G.W., Vittorini G.: Isospin dependent global nucleon-nucleus optical model at intermediate energies. Phys. Rev. C 80, 034608 (2009)CrossRefADSGoogle Scholar
  33. 33.
    Madland, D.G.: Proceedings of OECD/NEA specialist meeting on nucleon–nucleus optical model to 200 MeV p. 129 (1997). This can also be found at arXiv:nucl-th/9702035v1
  34. 34.
    Aguilera E.F., Martinez-Quiroz E., Lizcano D., Gómez-Camacho A., Kolata J.J., Lamm L.O., Guimarães V., Lichtenthäler R., Camargo O., Becchetti F.D., Jiang H., DeYoung P.A., Mears P.J., Belyaeva T.L.: Reaction cross sections for 8B, 7Be, and 6Li + 58Ni near the Coulomb barrier: Proton-halo effects. Phys. Rev. C 79, 021601 (2009)CrossRefADSGoogle Scholar
  35. 35.
    Yang Y.Y., Wang J.S., Wang Q., Pang D., Ma J.B., Huang M.R., Han J.L., Ma P., Jin S.L., Bai Z., Hu Q., Jin L., Chen J.B., Keeley N., Rusek K., Wada R., Mukherjee S., Sun Z.Y., Chen R.F., Zhang X.Y., Hu Z.G., Yuan X.H., Cao X.G., Xu Z.G., Xu S.W., Zhen C., Chen Z.Q., Chen Z., Chen S.Z., Du C.M., Duan L.M., Fu F., Gou B.X., Hu J., He J.J., Lei X.G., Li S.L., Li Y., Lin Q.Y., Liu L.X., Shi F.D., Tang S.W., Xu G., Xu X., Zhang L.Y., Zhang X.H., Zhang W., Zhao M.H., Guo Z.Y., Zhang Y.H., Xu H.S., Xiao G.Q.: Elastic scattering of the proton drip-line nucleus 8B off a natPb target at 170.3 MeV. Phys. Rev. C 87, 044613 (2013)CrossRefADSGoogle Scholar
  36. 36.
    Descouvemont P.: Reanalysis of the 7Be(p, γ)8B S factor in a microscopic model. Phys. Rev. C 70, 065802 (2004)CrossRefADSGoogle Scholar
  37. 37.
    Druet T., Descouvemont P.: Continuum effects in the scattering of exotic nuclei. Eur. Phys. J. A 48, 147 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • P. Descouvemont
    • 1
  • E. C. Pinilla
    • 1
  • M. S. Hussein
    • 2
    • 3
    • 4
  1. 1.Physique Nucléaire Théorique et Physique MathématiqueUniversité Libre de Bruxelles (ULB)BrusselsBelgium
  2. 2.Departamento de Física Matemática, Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  3. 3.Instituto de Estudos AvançadosUniversidade de São PauloSão PauloBrazil
  4. 4.Departamento de Física, Instituto Tecnológico de AeronáuticaCTASão PauloBrazil

Personalised recommendations