Skip to main content
Log in

Gauge Invariance, Lorentz Covariance and Canonical Quantization in Nucleon Structure Studies

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Different operators of quark and gluon momenta, orbital angular momenta, and gluon spin have been used in nucleon structure studies. Their precise meaning is reviewed with respect to gauge invariance, Lorentz covariance and canonical quantization rules. The advantage and disadvantage of different definitions are analyzed. We concentrate on our gauge invariant decomposition of the total momentum and angular momentum into quark and gluon parts based on the separation of the gauge potential into a gauge invariant (covariant) physical part and a gauge dependent pure gauge part. The Lorentz covariance and measurability of our operators are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaffe R.L., Manohar A.: The g 1 problem: deep inelastic electron scattering and the spin of proton. Nucl. Phys. B 337, 509–546 (1990)

    Article  ADS  Google Scholar 

  2. Zeng J.Y.: Quantum Mechanics. Academy, Beijing (2000)

    Google Scholar 

  3. Gottfried K.: Quantum Mechanics, pp. 103–116. Benjamin, New York (1966)

    Google Scholar 

  4. Ji X.: Comment on Spin and OAM in gauge theories. Phys. Rev. Lett. 104, 039101 (2010)

    Article  ADS  Google Scholar 

  5. Ji X.: Comment on Spin and OAM in gauge theories. Phys. Rev. Lett. 106, 259101 (2010)

    Article  ADS  Google Scholar 

  6. Dirac P.A.M.: Gauge-invariant formulation of quantum electrodynamics. Can. J. Phys. 33, 650–660 (1955)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Feynman R.P., Leighton R.B., Sands M.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley, Reading, MA (1963)

    Google Scholar 

  8. Chen X.S., Wang F.: The Problem of gauge invariance in the current study of nucleon spin. Commun. Theor. Phys. 27, 121–124 (1997)

    Article  Google Scholar 

  9. Ji X.: Gauge-invariant decomposition of nucleon spin. Phys. Rev. Lett. 78, 610–613 (1997)

    Article  ADS  Google Scholar 

  10. Chen, X.S., Wang, F.: Gauge invaiance and hadron structure (1998). arXiv:hep-ph/9802346 [hep-ph]

  11. Chen X.S., Lü X.F., Sun W.M., Wang F., Goldman T.: Spin and OAM in gauge theories: nucleon spin structure and multipole radiation revisited. Phys. Rev. Lett. 100, 232002-1–232002-4 (2008)

    ADS  Google Scholar 

  12. Chen, X.S., Lü, X.F., Sun, W.M., Wang, F., Goldman, T.: Spin and OAM in gauge theories: nucleon spin structure and multipole radiation revisited: Do gluons carry half of the nucleon momentum? Phys. Rev. Lett. 103, 062001-1–062001-4 (2008)

  13. Bliokh, K.Y., Dressel, J., Nori, F.: Conservation of the spin and OAMs in electromagneytism. New J. Phys. 16, 093037 (2014). arXiv:1404.5486 [physics.optics]

  14. Beth R.A.: Mechanical detection and measurement of the AM of light. Phys. Rev. 50, 115–125 (1936)

    Article  ADS  Google Scholar 

  15. Allen L. et al.: OAM of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  16. Van Enk S.J., Nienhuis G.: Commutation rules and eigenvalues of spin and OAM of radiation fields. J. Modern Opt. 41, 963–977 (1994)

    Article  ADS  Google Scholar 

  17. Bashinsky S.V., Jaffe R.L.: Quark and gluon OAM and spin in hard process. Nucl. Phys. B 536, 303–317 (1999)

    Article  ADS  Google Scholar 

  18. Sun W.M., Chen X.S., Lü X.F., Wang F.: Gauge invariant hydrongen-atom Hamiltonian. Phys. Rev. A 82, 012107-1–012107-5 (2010)

    ADS  Google Scholar 

  19. Goldman T.: Gauge invariance time-dependent Foldy–Wouthuysen transformation, and the Pauli Hamiltonian. Phys. Rev. D 15, 1063–1067 (1977)

    Article  ADS  Google Scholar 

  20. Kobe D.H., Yang K.H.: Gauge-invariant non-relativistic limit of an electron in a time-dependent electromagnetic field. J. Phys. A 13, 3171–3185 (1980)

    Article  ADS  Google Scholar 

  21. Ji X.D., Xu Y., Zhao Y.: Gluon spin, canonical momentum, and gauge symmetry. JHEP 1208, 082 (2012)

    Article  ADS  Google Scholar 

  22. Li J.F., Jiang Y., Sun W.M., Zong H.S., Wang F.: New application of decomposition of U(1) gauge potential: Aharonov–Bohm effect and Andereson–Higgs mechanism. Mod. Phys. Lett. B 26, 1250124-1–1250124-9 (2012)

    ADS  Google Scholar 

  23. Wong, C.W., Wang, F., Sun, W.M., Lü, X.F.: Gauge-invariant momentum and angular momentum operators in quantum electrodynamics and chromodynamics (2010). arXiv:1010.4336 [hep-ph]

  24. Leader, E., Lorce, C.: The AM contraversy: What’s it all about and does it matter? (2013). arXiv:1309.4235 [hep-ph]

  25. Bjorken J.D., Drell S.D.: Relativistic Quantum Fields. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  26. Weinberg S.: The Quantum Theory of Fields, vol. 1. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  27. Zhang P.M., Pak D.G.: On gauge invariant nucleon spin decomposition. Eur. Phys. J. A 48, 91–95 (2012)

    Article  ADS  MATH  Google Scholar 

  28. Chen X.S., Sun W.M., Wang F., Goldman T.: Proper identification of the gluon spin. Phys. Lett. B 700, 21–24 (2011)

    Article  ADS  Google Scholar 

  29. Wakamatsu, M.: Gauge- and frame-independent decomposition of nucleon spin. Phys. Rev. D 83, 014012 (2011)

  30. Ji X., Zhang J.H., Zhao Y.: Physics of Gluon helicity contribution to proton spin. Phys. Rev. Lett. 111, 112002 (2013)

    Article  ADS  Google Scholar 

  31. Lorcé C., Pasquini B.: Quark wigner distributions and orbital angular momentum. Phys. Rev. D 84, 014015 (2011)

    Article  ADS  Google Scholar 

  32. Hatta Y.: Notes on the orbital angular momentum of quarks in the nucleon. Phys. Lett. B 708, 186–190 (2012)

    Article  ADS  Google Scholar 

  33. Hatta Y., Yoshida S.: Twist analysis of the nucleon spin in QCD. JHEP 1210, 080 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wong, C.W., Chen, X.S. et al. Gauge Invariance, Lorentz Covariance and Canonical Quantization in Nucleon Structure Studies. Few-Body Syst 56, 249–255 (2015). https://doi.org/10.1007/s00601-015-0969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-0969-9

Keywords

Navigation