Few-Body Systems

, Volume 56, Issue 6–9, pp 495–501 | Cite as

Non-perturbative Calculation of the Scalar Yukawa Theory in Four-Body Truncation

  • Yang Li
  • V. A. Karmanov
  • P. Maris
  • J. P. Vary


The quenched scalar Yukawa theory is solved in the light-front Tamm–Dancoff approach including up to four constituents (one scalar nucleon, three scalar pions). The Fock sector dependent renormalization is implemented. By studying the Fock sector norms, we find that the lowest two Fock sectors dominate the state even in the large-coupling region. The one-body sector shows convergence with respect to the Fock sector truncation. However, the four-body norm exceeds the three-body norm at the coupling \({\alpha \approx 1.7}\).


Yukawa Model Mass Counterterm Yukawa Theory Scalar Nucleon Scalar Pion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakker, B.L.G., et al.: Light-front quantum chromodynamics: a framework for the analysis of Hadron physics. Nucl. Phys. Proc. Suppl. 251–252, 165 (2014). [arXiv:1309.6333 [hep-ph]]
  2. 2.
    Perry R.J., Harindranath A.: Renormalization in the light-front Tamm–Dancoff approach to field theory. Phys. Rev. D 43, 4051 (1991)CrossRefADSGoogle Scholar
  3. 3.
    Głazek S.D., Wilson K.G.: Renormalization of hamiltonians. Phys. Rev. D 48, 5863 (1993)CrossRefADSGoogle Scholar
  4. 4.
    Paston, S.A., Franke, V.A.: Comparison of quantum field perturbation theory for the light front with the theory in Lorentz coordinates. Theor. Math. Phys. 112, 1117 (1997) [Teor. Mat. Fiz. 112, 399 (1997)]Google Scholar
  5. 5.
    Grangé P., Mathiot J.-F., Butet B., Werner W.: Taylor–Lagrange renormalization scheme: application to light-front dynamics. Phys. Rev. D 80, 105012 (2009)CrossRefADSGoogle Scholar
  6. 6.
    Hiller, J.R., Brodsky, S.J.: Nonperturbative renormalization and the electron’s anomalous moment in large-α QED. Phys. Rev. D 59, 016006 (1998); [arXiv:hep-ph/9806541]
  7. 7.
    Karmanov, V.A., Mathiot, J.-F, Smirnov, A.V.: Systematic renormalization scheme in light-front dynamics with Fock space truncation. Phys. Rev. D 77, 085028 (2008); [arXiv:0801.4507 [hep-th]]
  8. 8.
    Karmanov V.A., Mathiot J.-F., Smirnov A.V.: Nonperturbative calculation of the anomalous magnetic moment in the Yukawa model within truncated Fock space. Phys. Rev. D 82, 056010 (2010)CrossRefADSGoogle Scholar
  9. 9.
    Karmanov V.A., Mathiot J.-F., Smirnov A.V.: Ab initio nonperturbative calculation of physical observables in light-front dynamics: application to the Yukawa model. Phys. Rev. D 86, 085006 (2012)CrossRefADSGoogle Scholar
  10. 10.
    Perry R.J., Harindranath A., Wilson K.G.: Light-front Tamm–Dancoff field theory. Phys. Rev. Lett. 65, 2959 (1990)CrossRefADSGoogle Scholar
  11. 11.
    Carbonell, J., Desplanques, B., Karmanov, V.A., Mathiot, J.-F.: Explicitly covariant light-front dynamics and relativistic few-body systems. Phys. Rep. 300, 215 (1998); [arXiv:nucl-th/9804029]
  12. 12.
    Brodsky S.J., Hiller J.R., McCartor G.: Application of Pauli–Villars regularization and discretized light-cone quantization to a single-fermion truncation of Yukawa theory. Phys. Rev. D 64, 114023 (2001)CrossRefADSGoogle Scholar
  13. 13.
    Baym, G.: Inconsistency of cubic Boson–Boson interactions. Phys. Rev. 117, 886 (1960)Google Scholar
  14. 14.
    Gross F., Şavklı C., Tjon J.: Stability of the scalar \({\chi^2\varphi}\) interaction. Phys. Rev. D 64, 076008 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Li, Y., Karmanov, V.A., Maris, P., Vary, J.P.: Ab initio approach to the non-perturbative scalar yukawa model. Phys. Lett. BGoogle Scholar
  16. 16.
    Wivoda J.J., Hiller J.R.: Application of discretized light-cone quantization to a model field theory in 3+1 dimensions. Phys. Rev. D 47, 4647 (1993)CrossRefADSGoogle Scholar
  17. 17.
    Şavklı C., Tjon J., Gross F.: Feynman–Schwinger representation approach to nonperturbative physics. Phys. Rev. C 60, 055210 (1999); [arXiv:hep-ph/9906211]
  18. 18.
    Hwang, D.S., Karmanov, V.A.: Many-body fock sectors in Wick–Cutkosky model. Nucl. Phys. B 696, 413 (2004); [arXiv:hep-th/0405035]
  19. 19.
    Ji, C.-R., Tokunaga, Y.: Light-front dynamic analysis of bound states in a scalar field model. Phys. Rev. D 86, 054011 (2012); [arXiv:1205.3812 [nucl-th]]

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Yang Li
    • 1
  • V. A. Karmanov
    • 2
  • P. Maris
    • 1
  • J. P. Vary
    • 1
  1. 1.Department of Physics and AstronomyIowa State UniversityAmesUSA
  2. 2.Lebedev Physical InstituteMoscowRussia

Personalised recommendations