Skip to main content
Log in

Static and Restricted Rigid Rotor Configurations of Three Classical 12-6-Lennard-Jones Particles

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Motivated by the continuous search for stable geometric configurations of atom and molecule clusters, we analyse the planar evolution of two freely movable point particles around a third immovable one subject to the 12-6-Lennard-Jones potential. This tailors our discussion to systems with one very heavy particle that can be assumed to be permanently at rest in the moving reference frame for the whole ensemble. Relating to Lennard-Jones interactions, we allow all three point particles to take different parameters. This breaks the symmetry conditions that are usually imposed on such systems. Through a classical non-regularized Hamiltonian description of our restricted three particle system, we study the existence of genuine equilibria and rigid rotor solutions around a single axis of rotation. We prove, depending on the choice of the Lennard-Jones parameters, that for these genuine equilibria, collinear alignments and triangular configurations of any shape can occur. Moreover, for the discussed type of relative equilibria a complete classification is provided by proving the existence of rigid rotor configurations in the plane of rotation (collinear cis and trans as well as triangle shaped configurations) and out of the plane of rotation (triangle shaped and flag-like configurations). Furthermore, we show that there are no further rigid rotor solutions of the underlying equations of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1989)

    Google Scholar 

  2. Atiyah M., Sutcliffe P.: Polyhedra in physics, chemistry and geometry. Milan J. Math. 71, 33–58 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berry R.S., Braier P., Hinde R.J., Cheng H.-P.: Dynamics and potential surfaces of small clusters. Isr. J. Chem. 30, 39–44 (1990)

    Article  Google Scholar 

  4. Chan Y., Thamwattana N., Hill JM.: Restricted three body problems at the nanoscale. Few-Body Syst. 46, 239–247 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Corbera M., Llibre J., Perez-Chavela E.: Equilibrium points and central configurations for the Lennard-Jones 2- and 3-body problems. Celest. Mech. Dyn. Astron. 89, 235–266 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Corbera M., Llibre J., Perez-Chavela E.: Symmetric planar non-collinear relative equilibria for the Lennard-Jones potential 3-body problem with two equal masses. Monogr. Real Acad. Cienc. Zaragoza 25, 93–114 (2004)

    MathSciNet  Google Scholar 

  7. Czerwinskia B., Palombob C., Rzeznika L., Garrisonb B.J., Stachuraa K., Samsona R., Postawa Z.: Organic mass spectrometry with low-energy projectiles. Vacuum 81, 1233–1237 (2007)

    Article  Google Scholar 

  8. Diacu F., Perez-Chavela E., Santoprete M.: Central configurations and total collisions for quasihomogeneous N-body problems. Nonlin. Anal. 65, 1425–1439 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jones, R.T.: The N-Body Problem with Repulsive-Attractive Quasihomogeneous Potential Functions. In: Master Thesis at the University of Victoria, Canada (2006)

  10. Jones R.T.: Central configurations with a quasihomogeneous potential function. J. Math. Phys. 49, 052901 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kristiansen K.U., Palmer P., Roberts M.: A unification of models of tethered satellites. SIAM J. Appl. Dyn. Syst. 10, 1042–1069 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Meyer K.R., Hall G.R.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, New York (1992)

    Book  MATH  Google Scholar 

  13. Lee C., Sim H.-G., Kim W., Lee S.H., Pak H.: Nonequilibrium molecular dynamics simulation study on the shear-induced orientational change of rodlike molecules. Bull. Korean Chem. Soc. 21, 434–440 (2000)

    Google Scholar 

  14. Lennard-Jones J.E.: Cohesion. Proc. Phys. Soc. 43, 461–482 (1931)

    Article  ADS  Google Scholar 

  15. Lanoix, E.: A Mathematical Model for the Long-Term Dynamics of Tethered Spacecraft. In: PhD Thesis, McGill University Montreal (1999)

  16. Mie G.: Zur kinetischen Theorie der einatomigen Körper. Ann. Phys. 11, 657–697 (1903)

    Article  MATH  Google Scholar 

  17. Montaldi J.A., Roberts M.: Relative equilibria of molecules. J. Nonlin. Sci. 9, 53–88 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Rupp F., Scheurle J.: Genuine equilibria of three body coulomb configurations. Few-Body Syst. 48, 1–10 (2010)

    Article  ADS  Google Scholar 

  19. Rupp, F., Scheurle, J.: Classification of a Class of Relative Equilibria in Three Body Coulomb Systems. In: Proceedings of 8th AIMS International Conference on Dynamic System and Differential Equations, DCDS Supplement 2011, pp. 1254–1262 (2011)

  20. Thakur S., Chen J.-X., Kapral R.: Interaction of a chemically propelled nanomotor with a chemical wave. Angew. Chem. Int. Ed. 50, 10165–10169 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Rupp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rupp, F. Static and Restricted Rigid Rotor Configurations of Three Classical 12-6-Lennard-Jones Particles. Few-Body Syst 56, 81–105 (2015). https://doi.org/10.1007/s00601-015-0958-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-0958-z

Keywords

Navigation