Skip to main content
Log in

Dispersion Representation of Deeply Virtual Compton Scattering

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We discuss the dispersive representation of the D-term form factor for hard exclusive reactions, using unsubtracted t-channel dispersion relations. This representation provides a microscopical interpretation of the physical content of the D-term form factor in terms of t-channel exchanges with the appropriate quantum numbers. The contribution from two-pion intermediate states is explicitly evaluated, and the corresponding results for the D-term form factor as function of t as well as at t = 0 are discussed in comparison with available model predictions and phenomenological parametrizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drechsel D., Pasquini B., Vanderhaeghen M.: Dispersion relations in real and virtual compton scattering. Phys. Rep. 378, 99 (2003)

    Article  ADS  Google Scholar 

  2. Pasquini B., Gorchtein M., Drechsel D., Metz A., Vanderhaeghen M.: Dispersion relation formalism for virtual compton scattering off the proton. Eur. Phys. J. A. 11, 185 (2001)

    Article  ADS  Google Scholar 

  3. Pasquini B., Gorchtein M., Drechsel D., Metz A., Vanderhaeghen M.: Dispersion relation formalism for virtual compton scattering and the generalized polarizabilities of the nucleon. Phys. Rev. C 62, 052201 (2000)

    Article  ADS  Google Scholar 

  4. Drechsel D., Gorchtein M., Pasquini B., Vanderhaeghen M.: Fixed-t subtracted dispersion relations for compton scattering off the nucleon. Phys. Rev. C 61, 015204 (1999)

    Article  ADS  Google Scholar 

  5. Pasquini B., Drechsel D., Vanderhaeghen M.: Proton spin polarizabilities from polarized compton scattering. Phys. Rev. C 76, 015203 (2007)

    Article  ADS  Google Scholar 

  6. Pasquini B., Drechsel D., Scherer S.: The polarizability of the pion: no conflict between dispersion theory and chiral perturbation theory. Phys. Rev. C 77, 065211 (2008)

    Article  ADS  Google Scholar 

  7. Anikin I.V., Teryaev O.V.: Dispersion relations and subtractions in hard exclusive processes. Phys. Rev. D 76, 056007 (2007)

    Article  ADS  Google Scholar 

  8. Teryaev, O.V.:Analytic properties of hard exclusive amplitudes. hep-ph/0510031

  9. Radyushkin A.V.: Generalized parton distributions and their singularities. Phys. Rev. D 83, 076006 (2011)

    Article  ADS  Google Scholar 

  10. Goldstein G.R., Liuti S.: The use of dispersion relations in hard exclusive processes and the partonic interpretation of deeply virtual compton scattering. Phys. Rev. D 80, 071501 (2009)

    Article  ADS  Google Scholar 

  11. Polyakov M.V., Weiss C.: Skewed and double distributions in pion and nucleon. Phys. Rev. D 60, 114017 (1999)

    Article  ADS  Google Scholar 

  12. Guidal M., Moutarde H., Vanderhaeghen M.: Generalized parton distributions in the valence region from deeply virtual compton scattering. Rep. Prog. Phys. 76, 066202 (2013)

    Article  ADS  Google Scholar 

  13. Kumericki K., Mueller D., Passek-Kumericki K.: Towards a fitting procedure for deeply virtual compton scattering at next-to-leading order and beyond. Nucl. Phys. B 794, 244 (2008)

    Article  ADS  Google Scholar 

  14. Goldstein G.R., Hernandez J.O., Liuti S.: Flexible parametrization of generalized parton distributions from deeply virtual compton scattering observables. Phys. Rev. D 84, 034007 (2011)

    Article  ADS  Google Scholar 

  15. Gonzalez-Hernandez J.O., Liuti S., Goldstein G.R., Kathuria K.: Interpretation of the flavor dependence of nucleon form factors in a generalized parton distribution model. Phys. Rev. C 88, 065206 (2013)

    Article  ADS  Google Scholar 

  16. Pasquini, B., Polyakov, M.V., Vanderhaeghen, M.: Dispersive evaluation of the D-term form factor in deeply virtual compton scattering. Phys. Lett. B 739, 133 (2014)

  17. Diehl M., Ivanov D.Y.: Dispersion representations for hard exclusive processes. Eur. Phys. J. C 52, 919 (2007)

    Article  ADS  Google Scholar 

  18. Frazer W.R., Fulco J.R.: Partial-wave dispersion relations for the process \({\pi\pi\rightarrow N\bar{N}}\) . Phys. Rev. 117, 1603 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Diehl M., Gousset T., Pire B., Teryaev O.: Probing partonic structure in \({\gamma^{*} \gamma\rightarrow\pi\pi}\) near threshold. Phys. Rev. Lett. 81, 1782 (1998)

    Article  ADS  Google Scholar 

  20. Diehl M., Gousset T., Pire B.: A Monte-Carlo for exclusive production of pion pairs in \({\gamma^{*} \gamma}\) collisions at large Q2. Phys. Rev. D 62, 073014 (2000)

    Article  ADS  Google Scholar 

  21. Polyakov M.V.: Hard exclusive electroproduction of two pions and their resonances. Nucl. Phys. B 555, 231 (1999)

    Article  ADS  Google Scholar 

  22. Kivel N., Mankiewicz L., Polyakov M.V.: NLO corrections and contribution of a tensor gluon operator to the process \({\gamma^{*} \gamma\rightarrow\pi\pi}\) . Phys. Lett. B 467, 263 (1999)

    Article  ADS  Google Scholar 

  23. Schopper, H. (ed.): Pion nucleon scattering. Part 2: methods and results of phenomenological analyses, Landolt-Börnstein, vol. 9b2. Springer, Berlin, Heidelberg (1983)

  24. Froggatt C.D., Petersen J.L.: Phase shift analysis of \({\pi^{+} \pi^{-}}\) scattering between 1.0 GeV and 1.8 GeV based on fixed momentum transfer analyticity (II). Nucl. Phys. B 129, 89 (1977)

    Article  ADS  Google Scholar 

  25. Lehmann-Dronke B., Pobylitsa P.V., Polyakov M.V., Schafer A., Goeke K.: Hard diffractive electroproduction of two pions. Phys. Lett. B 475, 147 (2000)

    Article  ADS  Google Scholar 

  26. Lehmann-Dronke B., Schaefer A., Polyakov M.V., Goeke K.: Angular distributions in hard exclusive production of pion pairs. Phys. Rev. D 63, 114001 (2001)

    Article  ADS  Google Scholar 

  27. Warkentin N., Diehl M., Ivanov D.Y., Schäfer A.: Exclusive electroproduction of pion pairs. Eur. Phys. J. A 32, 273 (2007)

    Article  ADS  Google Scholar 

  28. Polyakov M.V., Weiss C.: Two-pion light-cone distribution amplitudes from the instanton vacuum. Phys. Rev. D 59, 091502 (1999)

    Article  ADS  Google Scholar 

  29. Owens J.F.: Q2 dependent parametrizations of pion parton distribution functions. Phys. Rev. D 30, 943 (1984)

    Article  ADS  Google Scholar 

  30. Gluck M., Reya E., Vogt A.: Pionic parton distributions. Z. Phys. C 53, 651 (1992)

    Article  ADS  Google Scholar 

  31. Goeke K., Grabis J., Ossmann J., Polyakov M.V., Schweitzer P., Silva A., Urbano D.: Nucleon form-factors of the energy momentum tensor in the chiral quark-soliton mode. Phys. Rev. D 75, 094021 (2007)

    Article  ADS  Google Scholar 

  32. Goeke K., Grabis J., Ossmann J., Schweitzer P., Silva A., Urbano D.: The pion mass dependence of the nucleon form-factors of the energy momentum tensor in the chiral quark-soliton model. Phys. Rev. C 75, 055207 (2007)

    Article  ADS  Google Scholar 

  33. Cebulla C., Goeke K., Ossmann J., Schweitzer P.: The nucleon form-factors of the energy momentum tensor in the Skyrme model. Nucl. Phys. A 794, 87 (2007)

    Article  ADS  Google Scholar 

  34. Mueller, D., Hwang, D.S.: GPD and PDF modeling in terms of effective light-cone wave functions. arXiv:1108.3869[hep-ph]

  35. Polyakov M.V.: Generalized parton distributions and strong forces inside nucleons and nuclei. Phys. Lett. B 555, 57 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Polyakov, M.V., Shuvaev, A.G.: On ‘dual’ parametrizations of generalized parton distributions. hep-ph/0207153

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pasquini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquini, B. Dispersion Representation of Deeply Virtual Compton Scattering. Few-Body Syst 56, 267–273 (2015). https://doi.org/10.1007/s00601-015-0954-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-0954-3

Keywords

Navigation