Skip to main content
Log in

Confinement with Perturbation Theory, After All?

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

I call attention to the possibility that QCD bound states (hadrons) could be derived using rigorous Hamiltonian, perturbative methods. Solving Gauss’ law for A 0 with a non-vanishing boundary condition at spatial infinity gives an \({\mathcal{O}({\alpha_s^0})}\) linear potential for color singlet \({q \bar{q}}\) and qqq states. These states are Poincaré and gauge covariant and thus can serve as initial states of a perturbative expansion, replacing the conventional free in and out states. The coupling freezes at \({\alpha_s(0) \simeq 0.5}\) , allowing reasonable convergence. The \({\mathcal{O}({\alpha_s^0})}\) bound states have a sea of \({q \bar{q}}\) pairs, while transverse gluons contribute only at \({\mathcal{O}({\alpha_s})}\) . Pair creation in the linear A 0 potential leads to string breaking and hadron loop corrections. These corrections give finite widths to excited states, as required by unitarity. Several of these features have been verified analytically in D = 1 + 1 dimensions, and some in D = 3 + 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beringer, J.: Review of Particle Physics (RPP). Phys. Rev. D 86, 010001 (2012)

  2. Dokshitzer, Y.L.: Perturbative QCD theory (includes our knowledge of alpha(s)). In: Vancouver 1998, High Energy Physics, vol. 1, pp. 305–324 arXiv:hep-ph/9812252

  3. Hoyer, P.: Novel lorentz covariance for bound states. Phys. Lett. B 172, 101–103 (1986)

  4. Hoyer P.: Bound states at lowest order in hbar. arXiv:0909.3045 [hep-ph]

  5. Dietrich D.D., Hoyer, P., Järvinen, M.: Boosting equal time bound states. Phys. Rev. D 85, 105016 (2012). arXiv:1202.0826 [hep-ph]

  6. Dietrich, D.D., Hoyer, P., Järvinen, M.: Towards a Born term for hadrons. Phys. Rev. D 87, 065021 (2013). arXiv:1212.4747 [hep-ph]

  7. Hoyer, P.: Bound states–from QED to QCD. arXiv:1402.5005 [hep-ph]

  8. Dokshitzer, Y.L., Marchesini, G., Salam, G.P.: Revisiting non-perturbative effects in the jet broadenings. Eur. Phys. J. Direct C. 1, 3 (1999). arXiv:hep-ph/9812487

  9. Brodsky, S.J., Menke, S., Merino, C., Rathsman, J.: On the behavior of the effective QCD coupling \({\alpha_\tau(s)}\) at low scales. Phys. Rev. D. 67, 055008 (2003). arXiv:hep-ph/0212078

  10. Grunberg, G.: Evidence for infrared finite coupling in Sudakov resummation. Phys. Rev. D. 73, 091901 (2006). arXiv:hep-ph/0603135

  11. Fischer, C.S.: Infrared properties of QCD from Dyson-Schwinger equations. J. Phys. G. 32, R253 (2006). arXiv:hep-ph/0605173

  12. Deur, A., Burkert, V., Chen, J.P., Korsch, W.: Determination of the effective strong coupling constant \({\alpha_{s, g_1}(Q^2)}\) from CLAS spin structure function data. Phys. Lett. B 665, 349 (2008). arXiv:0803.4119 [hep-ph]

  13. Aguilar, A.C., Binosi, D., Papavassiliou, J., Rodriguez-Quintero J.: Non-perturbative comparison of QCD effective charges. Phys. Rev. D 80, 085018 (2009). arXiv:0906.2633 [hep-ph]

  14. Gehrmann, T., Jaquier, M., Luisoni, G.: Hadronization effects in event shape moments. Eur. Phys. J. C 67, 57–72 (2010). arXiv:0911.2422

  15. Courtoy, A., Liuti, S.: Extraction of \({\alpha_s}\) from deep inelastic scattering at large x. Phys. Lett. B 726, 320 (2013). arXiv:1302.4439

  16. Gribov, V.N.: The theory of quark confinement. Eur. Phys. J. C 10, 91 (1999). arXiv:hep-ph/9902279 [hep-ph]

  17. Dokshitzer, Y.L.: QCD phenomenology. arXiv:hep-ph/0306287 [hep-ph]

  18. Weinberg, S.: The quantum theory of fields. vol. 1: Foundations. University Press, Cambridge (1995)

  19. Breit, G.: The effect of retardation on the interaction of two electrons. Phys. Rev. 34, 553 (1929)

  20. Hansen, A., Ravndal, F.: Klein’s paradox and its resolution. Phys. Scr. 23, 1036 (1981)

  21. Plesset, M.S.: The dirac electron in simple fields. Phys. Rev. 41, 278 (1932)

  22. Geffen, D.A., Suura, H.: Solutions to a gauge invariant, equal time two-body wave equation. 1. Light mass quark-anti-quark system. Phys. Rev. D 16, 3305 (1977)

  23. Titchmarsh, E.C.: On the nature of the spectrum in problems of relativistic quantum mechanics. Q. J. Math. Oxford (2) 12, 227 (1961)

  24. Leader, E., Lorce, C.: The angular momentum controversy: what’s it all about and does it matter? Phys. Rep. 541, 163 arXiv:1309.4235 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Hoyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyer, P. Confinement with Perturbation Theory, After All?. Few-Body Syst 56, 537–543 (2015). https://doi.org/10.1007/s00601-014-0928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0928-x

Keywords

Navigation