Skip to main content
Log in

Solution of the Spinless Salpeter Equation with a Time-Dependent Linear Potential

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We derive the general solution of the semi-relativistic spinless Salpeter equation in the presence of a time-dependent linear potential via the Lewis–Riesenfeld framework and using two forms of the invariant. For comparison, we reobtain the solution in the momentum-space directly by applying a time-momentum transformation to the involved partial differential equation. We also investigate the classical-quantum correspondence for the model in the case of time-periodic force using a momentum-space Gaussian wave-packet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Truscott W.S.: Wave functions in the presence of a time-dependent field: Exact solutions and their application to tunneling. Phys. Rev. Lett. 70, 1900 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Li W., Reichl L.E.: Transport in strongly driven heterostructures and bound-state-induced dynamic resonances. Phys. Rev. B 62, 8269 (2000)

    Article  ADS  Google Scholar 

  3. Guedes I.: Solution of the Schrödinger equation for the time-dependent linear potential. Phys. Rev. A 63, 034102 (2001)

    Article  ADS  Google Scholar 

  4. Bekkar H., Benamira F., Maamache M.: Solution of the Schrödinger equation for the time-dependent linear potential. Phys. Rev. A 68, 016101 (2003)

    Article  ADS  Google Scholar 

  5. Luan P.G., Tang C.S.: Lewis-Riesenfeld approach to the solutions of the Schrödinger equation in the presence of a time dependent linear potential. Phys. Rev. A 71, 014101 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Feng M.: Complete solution of the Schrödinger equation for the time-dependent linear potential. Phys. Rev. A 64, 034101 (2001)

    Article  ADS  Google Scholar 

  7. Lu G., Hai W., Cai L.: Near coherent states of an electron in a time-dependent linear potential. Phys. Lett. A 357, 181 (2006)

    Article  ADS  Google Scholar 

  8. Berrehail M., Benamira F.: Class of invariants for a time dependent linear potential. Indian J. Phys. 87(10), 1023 (2013)

    Article  ADS  Google Scholar 

  9. Landim P.R., Guedes I.: Wave functions for a Dirac particle in a time-dependent potential. Phys. Rev. A 61, 054101 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. De Castro A.S., DeSouza Dutra A.: Classes of exact wave functions for general time-dependent Dirac Hamiltonians in 1+1 dimensions. Phys. Rev. A 67, 045101 (2003)

    Article  Google Scholar 

  11. Maamache M., Lakehal H.: Solution of the generalized Dirac equation in a time-dependent linear potential: Relativistic geometric amplitude factor. Europhys. Lett. 67(5), 695 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. Merad M., Bada H., Lecheheb A.: DKP particle in time-dependent field. Czech. J. Phys. 56(8), 765 (2006)

    Article  ADS  Google Scholar 

  13. Merad M., Bensaid S.: Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential. J. Math. Phys. 48, 073515 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Paul W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531 (1989)

    Article  ADS  Google Scholar 

  15. Brown L.S.: Quantum motion in a Paul trap. Phys. Rev. Lett. 66, 527 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Schweiter F., Tilch B., Ebeling W.: Uphill motion of active brownian particles in piecewise linear potentials. Eur. Phys. J. B 14, 157 (2000)

    Article  ADS  Google Scholar 

  17. Lewis H.R. Jr.: Class of exact invariants for classical and quantum time-dependent harmonic oscillators. J. Math. Phys. 9, 1976 (1968)

    Article  ADS  MATH  Google Scholar 

  18. Lewis H.R. Jr., Riesenfeld W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lucha W., Schoberl F.F.: Relativistic virial theorem. Phys. Rev. Lett. 64, 2733 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Lucha W., Schoberl F.F., Gromes D.: Bound states of quarks. Phys. Rep. 200, 127 (1991)

    Article  ADS  Google Scholar 

  21. Lucha W., Schoberl F.F.: Quark-antiquark bound states: relativistic versus nonrelativistic point of view. Int. J. Mod. Phys. A 7, 6431 (1992)

    Article  ADS  Google Scholar 

  22. Semay C., Silvestre-Brac B.: Potential models and meson spectra. Nucl. Phys. A 618, 455 (1997)

    Article  ADS  Google Scholar 

  23. Brau F., Semay C.: Light meson spectra and instanton-induced forces. Phys. Rev. D 58, 034015 (1998)

    Article  ADS  Google Scholar 

  24. Brau F., Semay C., Silvestre-Brac B.: Unified meson-baryon potentia. Phys. Rev. C 66, 055202 (2002)

    Article  ADS  Google Scholar 

  25. Chargui Y., Chetouani L., Trabelsi A.: Analytical treatment of the one-dimensional Coulomb problem for the spinless Salpeter equation. J. Phys. A 42, 355203 (2009)

    Article  MathSciNet  Google Scholar 

  26. Chargui Y., Trabelsi A., Chetouani L.: The one-dimensional spinless Salpeter Coulomb problem with minimal length. Phys. Lett. A 374, 2243 (2010)

    Article  ADS  MATH  Google Scholar 

  27. Chargui Y., Trabelsi A.: The zero-mass spinless Salpeter equation with a regularized inverse square potential. Phys. Lett. A 377, 158 (2013)

    Article  ADS  Google Scholar 

  28. Kowalski K., Rembielínski J.: Salpeter equation and probability current in the relativistic Hamiltonian quantum mechanics. Phys. Rev. A 84, 012108 (2011)

    Article  ADS  Google Scholar 

  29. Kowalski K., Rembielínski J.: Relativistic massless harmonic oscillator. Phys. Rev. A 81, 012118 (2010)

    Article  ADS  Google Scholar 

  30. Lämmerzahl C.: The pseudodifferential operator square root of the Klein–Gordon equation. J. Math. Phys. 34, 3918 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Petiau G.: Contribution à la théorie des équations d’ondes corpusculaires. Acad. R. Belg., A. Sci. Mém. Collect. 16, 2 (1936)

    Google Scholar 

  32. Kemmer N.: Quantum theory of Einsteim-Bose particles and nuclear interaction. Proc. R. Soc. A 166, 127 (1938)

    Article  ADS  MATH  Google Scholar 

  33. Duffin R.J.: On the characteristic matrices of covariant systems. Phys. Rev. 54, 1114 (1938)

    Article  ADS  Google Scholar 

  34. Kemmer N.: The particle aspect of meson theory. Proc. R. Soc. A 173, 91 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  35. Feshbach H., Villars F.: Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles. Rev. Mod. Phys. 30, 24 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Rodney T.D.: Symmetry of time-dependent Schrödinger equations. I. A classification of time-dependent potentials by their maximal kinematical algebras. J. Math. Phys. 22, 1959 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Chargui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chargui, Y., Dhahbi, A., Chetouani, L. et al. Solution of the Spinless Salpeter Equation with a Time-Dependent Linear Potential. Few-Body Syst 55, 1233–1243 (2014). https://doi.org/10.1007/s00601-014-0911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0911-6

Keywords

Navigation