Skip to main content
Log in

Differential Single-Capture Cross Sections for Fast Alpha–Helium Collisions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A four-body theoretical study of the single charge transfer process in collision of energetic alpha ions with helium atoms in their ground states is presented. The model utilizes the Coulomb–Born distorted wave approximation with correct boundary conditions to calculate the single-electron capture differential and integral cross sections. The influence of the dynamic and static electron correlations on the capture probability is investigated. The results of the calculations are compared with the recent experimental measurements for differential cross sections and with the other theoretical manipulations. The results for scattering at extreme forward angles are in good agreement with the experimental measurements, but in other scattering angles the agreement is poor. However, the present four-body results for integral cross sections are in excellent agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas L.H.: On the capture of electrons by swiftly moving electrified particles. Proc. R. Soc. (London) A 114, 561 (1927)

    Article  ADS  Google Scholar 

  2. Oppenheimer J.R.: On the quantum theory of the capture of electrons. Phys. Rev. 31, 349 (1928)

    Article  MATH  ADS  Google Scholar 

  3. Brinkman H.C., Kramers H.A.: Zur theorie der eifangung von elektronen durch α–teilchen. Proc. Acad. Sci. (Amsterdam) 33, 973 (1930)

    MATH  Google Scholar 

  4. Mapleton R.A.: Electron capture from He(1s 2) by protons. Phys. Rev. 122, 528 (1961)

    Article  ADS  Google Scholar 

  5. Datta S.K., Crothers D.S.F., McCarroll R.: The relation between the Coulomb-Born and the boundary-corrected first-order born approximations for electron capture. J. Phys. B At. Mol. Opt. Phys. 23, 479 (1990)

    Article  ADS  Google Scholar 

  6. Datta S.K., Scheid W., Grün N.: Electron capture by a fully stripped ion from two-electron atomic and ionic targets in the Coulomb-Born approximation. J.Phys. B At. Mol. Opt. Phys. 26, 2127 (1993)

    Article  ADS  Google Scholar 

  7. Pivovar, L.I., Tabaev, V.M., Nikolov, M.T.: Electron loss and capture by 200-1500 keV helium ions in various gases, J. Exp. Theor. Phys. JETP, 14, 20–25, (1962) [Zh. Eksp. Teor. Fiz. 41, 26 (1961)]

  8. Hvelplund P., Heinemeier J., Horsdal-Pedersen E., Simpson F.R.: Electron capture by fast He 2+ ions in gases. J. Phys. B At. Mol. Opt. Phys. 9, 491 (1976)

    Article  ADS  Google Scholar 

  9. Shah M.B., Gilbody H.B.: Single and double ionisation of helium by H +, He 2+ and Li 3+ ions. J. Phys. B At. Mol. Opt. Phys. 18, 899 (1985)

    Article  ADS  Google Scholar 

  10. DuBois R.D.: Ionization and charge transfer in He 2+–rare-gas collisions. II. Phys. Rev. A 36, 2585 (1987)

    Article  ADS  Google Scholar 

  11. de Castro Faria N.V., Freire F.L. Jr, de Pinho A.G.: Electron loss and capture by fast helium ions in noble gases. Phys. Rev. A 37, 280 (1988)

    Article  ADS  Google Scholar 

  12. Shah M.B., McCllion P., Gilbody H.B.: Electron capture and ionisation in collisions of slow H + and He 2+ ions with helium. J. Phys. B At. Mol. Opt. Phys. 22, 3037 (1989)

    Article  ADS  Google Scholar 

  13. Mergel V. et al.: State selective scattering angle dependent capture cross sections measured by cold target recoil ion momentum spectroscopy. Phys. Rev. Lett. 74, 2200 (1989)

    Article  ADS  Google Scholar 

  14. Schöffler M.S. et al.: State-selective differential cross sections for single and double electron capture in He +,2+-He and p-He collisions. Phys. Rev. A 79, 064701 (2009)

    Article  ADS  Google Scholar 

  15. Abufager P.N., Fainstein P.D., Martínez A.E., Rivarola R.D.: Single electron capture differential cross section in H +He collisions at intermediate and high collision energies. J. Phys. B At. Mol. Opt. Phys. 38, 11 (2005)

    Article  ADS  Google Scholar 

  16. Mančev I.: Electron correlations in single-electron capture from heliumlike atomic systems. Phys. Rev. A 60, 351 (1999)

    Article  ADS  Google Scholar 

  17. Mančev I.: Single-electron capture from helium-like atomic systems by bare projectiles. Europhys. Lett. 69, 200 (2005)

    Article  ADS  Google Scholar 

  18. Busnengo H.F., Martínez A.E., Rivarola R.D.: Single electron capture from He targets. J. Phys. B At. Mol. Opt. Phys. 29, 4193 (1996)

    Article  ADS  Google Scholar 

  19. Galassi M.E., Abufager P.N., Martínez A.E., Rivarola R.D., Fainstein P.D.: The continuum distorted wave eikonal initial state model for transfer ionization in H +, He 2+ + He collisions. J.Phys. B At. Mol. Opt. Phys. 35, 1727 (2002)

    Article  ADS  Google Scholar 

  20. Mančev I.: Single charge exchange in fast collisions of alpha particles with helium. J. Phys. B At. Mol. Opt. Phys. 36, 93 (2003)

    Article  ADS  Google Scholar 

  21. Mančev I., Milojević N.: Electron correlations in single-electron capture from helium by fast protons and α particles. Phys. Rev. A 81, 022710 (2010)

    Article  ADS  Google Scholar 

  22. Mančev I., Milojević N, Belkić Dž.: State-selective and total single-capture cross sections for fast collisions of multiply charged ions with helium atoms. Few-Body Syst. 54, 1889 (2013)

    Article  ADS  Google Scholar 

  23. Zapukhlyak M., Kirchner T.: Projectile angular-differential cross sections for electron transfer processes in ion-helium collisions: Evidence for the applicability of the independent electron model. Phys. Rev. A 80, 062705 (2009)

    Article  ADS  Google Scholar 

  24. Zapukhlyak M., Kirchner T., Hasan A., Tooke B., Schulz M.: Projectile angular-differential cross sections for transfer and transfer excitation in proton collisions with helium. Phys. Rev. A 77, 012720 (2008)

    Article  ADS  Google Scholar 

  25. Ghanbari-Adivi E., Ghavaminia H.: Electron capture by alpha particles from helium atoms in a Coulomb–Born distorted-wave approximation. J. Phys. B At. Mol. Opt. Phys. 45, 235202 (2012)

    Article  ADS  Google Scholar 

  26. Dewangan D.P., Eichler J.: Charge exchange in energetic ion-atom collisions. Phys. Rep. 247, 59 (1994)

    Article  ADS  Google Scholar 

  27. Belkić D., Mančev I., Hanssen J.: Four-body methods for high-energy ion-atom collisions. Rev. Mod. Phys. 80, 249 (2008)

    Article  ADS  Google Scholar 

  28. Harris A.L., Peacher J.L., Madison D.H.: Four-body model for transfer excitation. Phys. Rev. A 80, 062707 (2009)

    Article  ADS  Google Scholar 

  29. Harris A.L., Peacher J.L., Madison D.H.: Theoretical fully differential cross sections for double-charge-transfer collisions. Phys. Rev. A 82, 022714 (2010)

    Article  ADS  Google Scholar 

  30. Chowdhury U., Harris A.L., Peacher J.L., Madison D.H.: Four-body charge transfer processes in proton–helium collisions. J. Phys. B At. Mol. Opt. Phys. 45, 035203 (2012)

    Article  ADS  Google Scholar 

  31. Chowdhury U., Harris A.L., Peacher J.L., Madison D.H.: Post collision interactions in fully differential cross sections for four-body charge transfer processes. J. Phys. B At. Mol. Opt. Phys. 45, 175204 (2012)

    Article  ADS  Google Scholar 

  32. Ghanbari-Adivi E.: Coulomb–Born distorted wave approximation applied to the proton–helium single-electron capture process. J. Phys. B At. Mol. Opt. Phys. 44, 165204 (2011)

    Article  ADS  Google Scholar 

  33. Ghanbari-Adivi E.: Inner-shell electron capture by impact of positronon the multi-electron atomic targets. Eur. Phys. J. D 62, 389 (2011)

    Article  ADS  Google Scholar 

  34. Ghanbari-Adivi E., Ghavaminia H.: Single-electron capture from helium atoms by fast singly positive charged helium ions. Eur. Phys. J. D 66, 318 (2012)

    Article  ADS  Google Scholar 

  35. Ghanbari-Adivi E., Velayati A.N.: Comparative study of the three- and four-body boundary-corrected Born approximations for positronium formation. J. Phys. B At. Mol. Opt. Phys. 46, 065204 (2013)

    Article  ADS  Google Scholar 

  36. Feynman R.P.: Space-Time approach to quantum electrodynamics. Phys. Rev. 76, 769 (1949)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Nordsieck A.: Reduction of an integral in the theory of bremsstrahlung. Phys. Rev. 93, 785 (1954)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Hylleraas E.: A new calculation of the energy of helium in the ground state as well as the lowest term of ortho helium. Z. Phys. 54, 347 (1929)

    Article  MATH  ADS  Google Scholar 

  39. Ghanbari-Adivi E., Velayati A.N.: Four-body treatment of the K-shell positronium formation from multi-electron atoms. Cent. Eur. J. Phys. 12, 192 (2014)

    Article  Google Scholar 

  40. Byron F.W., Joachain C.J.: Importance of correlation effects in the ionization of helium by electron impact. Phys. Rev. Lett. 16, 1139 (1966)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghanbari-Adivi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari-Adivi, E., Ghavaminia, H. Differential Single-Capture Cross Sections for Fast Alpha–Helium Collisions. Few-Body Syst 55, 1109–1123 (2014). https://doi.org/10.1007/s00601-014-0905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0905-4

Keywords

Navigation