Skip to main content
Log in

Quark Mass Functions and Pion Structure in Minkowski Space

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We present a study of the dressed quark mass function and the pion structure in Minkowski space using the covariant spectator theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We use an interaction kernel in momentum space that is a relativistic generalization of the linear confining \({q\bar{q}}\) potential and a constant potential shift that defines the energy scale. The confining interaction has a Lorentz scalar part that is not chirally invariant by itself but decouples from the equations in the chiral limit and therefore allows the Nambu–Jona–Lasinio mechanism to work. We adjust the parameters of our quark mass function calculated in Minkowski-space to agree with LQCD data obtained in Euclidean space. Results of a calculation of the pion electromagnetic form factor in the relativistic impulse approximation using the same mass function are presented and compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edwards R.G., Mathur N., Richards D.G., Wallace S.J.: The flavor structure of the excited Baryon spectra from lattice QCD. Phys. Rev. D 87, 054506 (2013)

    Article  ADS  Google Scholar 

  2. Guo P., Dudek J.J., Edwards R.G., Szczepaniak A.P.: Coupled-channel scattering on a torus. Phys. Rev. D 88, 014501 (2013)

    Article  ADS  Google Scholar 

  3. Qin S.x., Chang L., Liu Y.x., Roberts C.D., Wilson D.J.: Interaction model for the gap equation. Phys. Rev. C 84, 042202 (2011)

    Article  ADS  Google Scholar 

  4. Qin S.x., Chang L., Liu Y.x., Roberts C.D., Wilson D.J.: Investigation of rainbow-ladder truncation for excited and exotic mesons. Phys. Rev. C 85, 035202 (2012)

    Article  ADS  Google Scholar 

  5. Kalashnikova Y.S., Nefediev A.V., Ribeiro J.E.F.T.: Confinement and parity doubling in heavy-light mesons. Phys. Rev. D 72, 034020 (2005)

    Article  ADS  Google Scholar 

  6. Bicudo P., Marques G.M.: Chiral symmetry breaking with scalar confinement. Phys. Rev. D 70, 094047 (2004)

    Article  ADS  Google Scholar 

  7. Allen T.J., Olsson M.G., Veseli S.: From scalar to string confinement. Phys. Rev. D 62, 094021 (2000)

    Article  ADS  Google Scholar 

  8. Michael C.: The long range spin orbit potential. Phys. Rev. Lett. 56, 1219 (1986)

    Article  ADS  Google Scholar 

  9. Gromes D.: Spin dependent potentials in QCD and the correct long range spin orbit term. Z. Phys. C 26, 401 (1984)

    Article  ADS  Google Scholar 

  10. Bali G.S., Schilling K., Wachter A.: Complete O (v**2) corrections to the static interquark potential from SU(3) gauge theory. Phys. Rev. D 56, 2566–2589 (1997)

    Article  ADS  Google Scholar 

  11. Lucha W., Schoberl F.F., Gromes D.: Bound states of quarks. Phys. Rept. 200, 127–240 (1991)

    Article  ADS  Google Scholar 

  12. Gross F., Milana J.: Covariant, chirally symmetric, confining model of mesons. Phys. Rev. D 43, 2401–2417 (1991)

    Article  ADS  Google Scholar 

  13. Gross F., Milana J.: Decoupling confinement and chiral symmetry breaking: an explicit model. Phys. Rev. D 45, 969–974 (1992)

    Article  ADS  Google Scholar 

  14. Gross F., Milana J.: Goldstone pion and other mesons using a scalar confining interaction. Phys. Rev. D 50, 3332–3349 (1994)

    Article  ADS  Google Scholar 

  15. Savkli C., Gross F.: Quark–antiquark bound states in the relativistic spectator formalism. Phys. Rev. C 63, 035208 (2001)

    Article  ADS  Google Scholar 

  16. Gross F.: Three-dimensional covariant integral equations for low-energy systems. Phys. Rev. 186, 1448 (1969)

    Article  ADS  Google Scholar 

  17. Gross, F.: New theory of nuclear forces. Relativistic origin of the repulsive core. Phys. Rev. D 10, 223 (1974)

    Google Scholar 

  18. Gross F.: Relativistic few-body problem. I. Two-body equations. Phys. Rev. C 26, 2203 (1982)

    Article  ADS  Google Scholar 

  19. Biernat, E.P., Gross, F., Pena, M.T., Stadler, A.: Confinement, quark mass functions, and spontaneous chiral symmetry breaking in Minkowski space. Phys. Rev. D 89, 016005 (2014)

    Google Scholar 

  20. Biernat, E.P., Gross, F., Pena, M.T., Stadler, A.: Pion electromagnetic form factor in the Covariant Spectator Theory . Phys. Rev. D 89, 016006 (2014)

    Google Scholar 

  21. Gross F., Riska D.O.: Current conservation and interaction currents in relativistic meson theories. Phys. Rev. C 36, 1928–1941 (1987)

    Article  ADS  Google Scholar 

  22. Gross F., Van Orden J.W., Holinde K.: Relativistic one-boson-exchange model for the nucleon-nucleon interaction. Phys. Rev. C 45, 2094 (1992)

    Article  ADS  Google Scholar 

  23. Surya Y., Gross F.: Unitary, gauge invariant, relativistic resonance model for pion photoproduction. Phys. Rev. C 53, 2422–2448 (1996)

    Article  ADS  Google Scholar 

  24. Bowman P.O., Heller U.M., Leinweber D.B., Parappilly M.B., Williams A.G. et al.: Unquenched quark propagator in Landau gauge. Phys. Rev. D 71, 054507 (2005)

    Article  ADS  Google Scholar 

  25. Gross F.: Relativistic treatment of loosely bound systems in scattering theory. Phys. Rev. 140, B410–B421 (1965)

    Article  ADS  Google Scholar 

  26. Arnold R.G., Carlson C.E., Gross F.: High momentum transfer elastic electron–deuteron scattering. Phys. Rev. Lett. 26, 1516 (1977)

    Article  ADS  Google Scholar 

  27. Arnold R.G., Carlson C.E., Gross F.: Elastic electron–deuteron scattering at high energy. Phys. Rev. C 21, 1426 (1980)

    Article  ADS  Google Scholar 

  28. Devine N., Van Orden J.W., Gross F.: Elastic electron scattering from the deuteron using the gross equation. Phys. Rev. Lett. 75, 4369 (1995)

    Article  ADS  Google Scholar 

  29. Huber G.M. et al.: Charged pion form factor between Q 2 = 0.60 and 2.45 GeV2. ii. determination of, and results for, the pion form factor. Phys. Rev. C 78, 045203 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar P. Biernat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biernat, E.P., Gross, F., Peña, M.T. et al. Quark Mass Functions and Pion Structure in Minkowski Space. Few-Body Syst 55, 705–708 (2014). https://doi.org/10.1007/s00601-014-0863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0863-x

Keywords

Navigation